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Abstract

In this habilitation thesis we have described the significant results achieved by us after

obtaining the PhD degree in Mathematics from Babeş-Bolyai University of Cluj-Napoca,

in 2004. We would like to mention that the PhD thesis was dedicated to a different

subject from mathematical analysis, namely, Spline Based Numerical Methods Applied

in Statistics, a subject related to functional analysis, statistics and numerical calculus.

The research results presented here are concerned with the theory of the functions of one

complex variable, a classic topic of mathematical analysis which still remains an attractive

research area for many mathematicians from all over the world.

The theory of functions of one complex variable was established in the middle of

the past century, as one of the mathematical fields, a subdomain of complex analysis. An

important area of the theory of functions of one complex variable is the geometric theory

of analytic functions, called also geometric function theory in which the goal is to give

geometrical meaning to some analytically expressed conditions, such that the correctness

of the analytic judgement is tightly linked with the intuitive one. Hence, one can take

advantage from this duality, by combining analytic proof with geometric intuition in order

to study various classes of functions.

Among the properties that have been studied for the functions of one complex

variable, there is the so called, univalence. An analytical (holomorphic) and injective

function on the domain U , U ⊂ C, U = {z ∈ C : |z| < 1} is called a univalent function

on U . The condition f ′(z) 6= 0, ∀z ∈ U , is just a necessary univalence condition, ensuring

a local univalence only. The goal is to find some supplimentary conditions, which can

enforce the univalence of a function f , on the domain U . Hence, it is suitable to obtain

both necessary and sufficient conditions for univalence. Taking into account also the

geometric point of view, the univalence can be linked with conformal mappings.

Being one of the main concept in geometric function theory, the univalent function

(holomorphic and injective), was studied for the first time by P. Koebe, in 1907. Within

a century, the theory of univalent functions has been developed considerably by many

mathematicians. Necessary and sufficient conditions for univalence were obtained for the

first time in 1931 by Gh. Calugareanu, after that being studied by many authors, among
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we recall here Z. Nehari, C. Pomerenke, A.W. Goodman, G. M. Goluzin, etc. ([42],

[65])) and some classical works as: Z. Nehari, Conformal mappings, 1952, L.V. Ahlfors,

Conformal invariants, Topics in Geometric Function Theory, 1973, Ch. Pommerenke,

Univalent functions, 1975, A.W. Goodman, Univalent functions, 1984, S.S. Miller, P.T.

Mocanu, Differential Subordinations, Theory and Applications, 2000. There is also a well

organized romanian research group founded by P.T. Mocanu, having an important impact

on the international research group, more recent research directions being based on the

theory of differential subordinations introduced by P.T. Mocanu and S.S. Miller ([63]).

Even if the geometric function theory is considered more like a theoretical domain,

some practical applications were also derived from the theoretical studies, for example, in

fluid mechanics, electrotechnics, nuclear physics and others.

An important field in geometric function theory is given by the study of integral

operators on spaces of analytic functions ([7], [81]), the first mathematician who intro-

duced an integral operator on a class of univalent functions being J.W. Alexander, in 1915.

From the last century the integral operators have been studied by a lot of mathemati-

cians, among which we mention here R. Libera, S. Bernardi, S.S. Miller, P.T. Mocanu,

M.O. Reade, R. Singh, N.N. Pascu and many others. Nowadays new frontiers of integral

operators are designed to stimulate interest among the young researchers in the field of

geometric function theory.

Our contribution to this subject began in 2000, by working together with D. Breaz

to extend some of well known classical integral operators and to prove their properties

on various classes of analytic functions. The first representative papers were published in

2002 ([9] and [10]), the integral operators introduced in those papers being cited in more

than 100 scientific articles written by mathematicians from the country and abroad. Over

the years we published a series of papers and one book (see [5], [8]-[39], [43], [82]-[86], [96],

[100], this being only a selective list). The book is related to recent studies on univalent

integral operators and it came as a result of joint work together with Daniel Breaz from ”1

Decembrie 1918” University of Alba Iulia and Maslina Darus from Kebangsaan University,

Kuala Lumpur, Malaysia (see[27]).

We would like to outline that also some of our scientific results published and

presented here were obtained as joint work with researchers from Japan, Egypt, Canada,

Turkey and Romania, while taking part in various scientific events as for example, dif-

ferent editions of Geometric Function Theory and Applications Symposium, an itinerary

conference on the aimed domain but also during the scientific seminars attended as visit-

ing professor in Kinki University, Osaka, Japan (2010) and Kebangsaan University, Kuala

Lumpur, Malaysia, 2012 and 2013. Coming from a different subject considered during

PhD studies, the support received over the years from all our collaborators was both
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needed and appreciated. From this point of view, we would like to thank them all grate-

fully, begining with D. Breaz, V. Pescar and S. Owa with whom we have published most

of our joint papers and also continuing with R. El-Ashwah, M, Darus, H. Srivastava, Y.

Polatoglu, J. Nishiwaki, M. Acu, M.K. Aouf, N. Ularu and others.

Among the results that we got in this field, from which most of them are presented

in this thesis, we mention the following:

- introduction of new integral operators as an extension of already known operators

that can be recovered as particular cases from our operators,

- the study of geometric properties as univalence, convexity, starlikeness for some

integral operators,

- the study of preserving class properties for some integral operators,

- extension of some Becker type univalence criteria for integral operators,

- the study of some classes of analytic functions taking into account various aspects

as for example the behaviour of Hadamard product on those classes,

- coefficients estimates for some classes of analytic functions,

- distorsion theorems for some classes of analytic functions.

These results and also some new and not published yet ideas are presented here,

in the habilitation thesis, in the main chapter but also in the chapter dedicated to our

future research plans.

The thesis is structured into three chapters, the main one being the second chapter

which contains the published work conducted by the candidate, in this field, a chapter

which is supported by the first one, giving the preliminaries and continued by the last

one, related to future plans.

Chapter 1 comprises preliminary instruments that will be further used for deriving

our results, as the definition of some well known classes of analytic functions. More

precisely, the univalent, starlike, convex and some other type of functions are recalled

here together with some of their properties. A set of integral operators used to obtain our

operators is also presented, together with some related results. We would like to mention

that the chapter is focused strictly on those classical results which are most used in the

next chapters.

Chapter 2 is dedicated to the contribution of the authors in the field of geometric

function theory and is divided into eighteen sections. At the beginning of each section

we mention the papers where the results are contained. Also, we would like to mention

that some of the proofs and some of the secondary results (as some of the corollaries) are

omited but all of them can be found in the papers that are already published.

In the Section 2.1, we present the first four of the general integral operators that

we have introduced over the years, having as basis some of the classical well known
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operators, but using more than one function in the construction of them. Our operators

cover some classical operators as those of Kim and Merkes, respectively, Pfaltzgraff. For

these operators, we obtained univalence criteria which generalize the univalence criteria

given by V. Pescar, respectiely V. Pescar and S. Owa. The paper in which we published

the result, [9], has over 100 citations, being a reference for other new integral operators

that in the meantime were defined by us or by other mathematicians.

Within the Section 2.2, we disscused some starlikeness conditions obtained by us

for the Bernardi operator and for another general integral operator which covers both

Bernardi and Alexander operators.

Two univalence criteria are proved in the Section 2.3, for a general integral operator

defined as a generalization for n functions of an operator given by V. Pescar. Both ours

and Pescar operators are particular cases of Mocanu-Miller-Reade operator. The operator

was studied on a class of univalent functions, introduced by Ozaki and Nunokawa.

Convexity properties for a general integral operator of Kim-Merkes type were

presented in the Section 2.4, by considering three special classes of univalent functions,

given by Stankiewicz and Wisniowska and two, respectively by Ronning.

In the Section 2.5, a univalence criterion is studied for a general integral operator

introduced by Senivasagan and Breaz, on the subclass of univalent functions, defined by

Ozaki and Nunokawa.

For a general integral operator of Pfaltzgraff type, some class preserving properties

are given in the Section 2.6, taking into account the following type of functions: univalent,

starlike, convex, convex of a given order and respectively, uniformly convex functions.

In the Section 2.7, we studied the behaviour of two general integral operators, of

Kim-Merkes and Pfaltzgraff type, on some classes of analytic functions of complex order

and real type, given by B. Frasin.

We found the convexity order and some coefficient estimates for two general integral

operators, on some class of convex functions related to a hyperbola, in the Section 2.8.

In the Section 2.9, we presented a result regarding the univalence for a general

integral operator introduced by us, for which the number of functions that compose the

operator depends on a complex number.

The behaviour of the general integral operator introduced by Senivasagan and

Breaz is studied with respect to the univalence, on the subclasses of univalent functions

S(α) and T2,µ, in the Section 2.10.

In the Section 2.11, we studied the convexity of two of our general integral opera-

tors, on the classes of some special analytic functions.

Three univalence criteria for a general integral operator built on two sets of func-

tions, respectively regular and Caratheodory functions are presented in the Section 2.12.
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Kudriasov type sufficient univalence conditions for two of our general integral

operators (Kim-Merkes type and Pfaltzgraff type) were presented in the Section 2.13.

Section 2.14 contains coefficients estimates and modified Hadamard product prop-

erties for some analytic functions, p-valent, with negative coefficients. These extend pre-

vious results obtained by us on classes of starlike, respectively convex functions of order

α, p-valent, with negative coefficients, defined with a differential operator.

In the Section 2.15, we obtain new conditions of univalence for two general inte-

gral operators, Tn and Bn, by applying the improvement of Becker univalence criterion,

obtained by Pascu in the paper [76]. Also, a lemma given by Mocanu and Şerb in the

paper [66], will be used to get some parts of the results.

Section 2.16 presents a new class of analytic and p-valent functions involving higher-

order derivatives. For this p-valent function class, we derive several interesting properties

including coefficient inequalities, distortion theorems, extreme points, and the radii of

close-to-convexity, starlikeness and convexity. Several applications involving an integral

operator are also considered. Finally, we obtain some results for the modified Hadamard

product of the functions belonging to the p-valent functions class introduced here.

Using the Möbius transformations, some properties and examples of fractional

calculus are presented in the Section 2.17.

In the Section 2.18, applying the extremal function for the subclass of analytic func-

tions, S∗(α), new classes P∗(α) and Q∗(α) are considered using certain subordinations.

The object of this section is to present some interesting properties for f(z) belonging to

these classes.

Chapter 3 includes a perspective plan for the present and future projects in

scientific research and profesional career of the author. We will continue our research in

the field of geometric function theory, both on the study of the integral operators and the

study of some classes of analytic functions. At the same time, we intend to maintain focus

on the certain applications of spline functions in statistics which was the other field, aimed

in our scientific work, during PhD research studies. We also have in view to organize some

scientific seminars for PhD students that are interested in the field of geometric function

theory and to write a scientific monograph related to our contributions in this domain.

Regarding the research goals, motivated by the recent results in the field of geo-

metric function theory and willing to extend our previous work described in the Chapter

2, we will focuse on three general research directions, namely:

- study of new geometric properties for the operators considered in this thesis with

respect to their univalence (research direction A),

- construction of new integral operators that cover the already known operators as

particular cases (research direction B),
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- construction of the classes of analytic functions having interesting geometric

properties (research directions C).

Within the research direction A, we aim to extend the results that we have already

obtained for the integral operators J1 - J8, most of them on univalence (see Chapter 2,

where various univalence conditions were obtained), by investigating other properties of

the operators, as convexity and starlikeness for example. In order to approach the study of

these operators with respect to other properties, we will consider some particular classes

of analytic functions. For the research direction B, we have in mind to investigate the

existence of each new integral operator (to be well defined), to find other motivation of the

operators, besides their generality, taking into account possible geometric properties and

some particular interesting examples and finally to investigate geometric properties of the

operators. Related to the research direction C, for each of the new introduced classes, we

have in view to study at least the following lines: finding examples of functions that prove

the nontriviality, study of Hadamard product on those classes (or some modified version

of Hadamard product), characterization of the classes by finding coefficients estimates,

and respectively, finding of class preserving properties for some integral operators. All

of these research directions are briefly presented in the Section 3.1, by mentioning some

problems to solve, particular examples of study and the approach methods that will be

considered.

Some of the research items which are part of our current work are given in the last

two sections of the chapter. Thus, on the short term, we aim to continue the joint project

started with V. Pescar and D. Breaz, on the subject of the applications of the univalence

of some integral operators in the field of fluid mechanics. Some results concerning the

univalence of the inverse boundary problem solution, obtained together with V. Pescar

are described in the Section 3.2. Also, we are about to finish the research project started

together with S. Owa, J. Nishiwaki and D. Breaz, related to the study of some new classes

of analytic functions using methods based on differential subordinations. These classes are

defined starting from the classical definitions of starlike and respectively, convex functions

and some part of the results are already accepted for publication, being described in the

Section 3.3.

Other lines of work that we aim to follow are related to: extending of other type

of univalence criteria from functions to integral operator, in the same manner as we

have worked far now with Pascu criterion in the results presented in Chapter 2, study of

some integro-differential operators, the analysis of already obtained results through the

extremal function issue, finding some applications for the theoretical results obtained (as

it is started in the Section 3.2) and using of specialized software to outline the geometric

properties of some integral operators mapping.
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Rezumat

În prezenta teză de abilitare, sunt descrise rezultatele semnificative obţinute de către

autor, după obţinerea titlului de doctor ı̂n matematică, la Universitatea Babeş-Bolyai,

Cluj-Napoca, ı̂n anul 2004. Dorim să precizăm că teza de doctorat a fost dedicată unui

subiect de cercetare diferit, din cadrul analizei matematice, şi anume, Metode numerice

bazate pe funcţii spline, aplicate ı̂n statistică, subiect bazat pe analiză funcţională şi cal-

cul numeric. Rezultatele de cercetare prezentate aici se referă la teoria funcţiilor de o

variabilă complexă, un subiect clasic din analiza matematică, ı̂ncă atractiv pentru mulţi

matematicieni din ţară şi străinătate.

Teoria funcţiilor de o variabilă complexă a debutat la mijlocul secolului trecut ca

un subdomeniu al matematicii, respectiv al analizei complexe. Un subiect important este

teoria geometrică a funcţiilor analitice, ı̂n care unul dintre obiective este acela de a da

interpretări geometrice unor condiţii exprimate analitic, astfel că rigoarea raţionamentului

analitic este strâns legată cu intuiţia. Profitând de această dualitate, se poate combina

demonstraţia analitică şi intuiţia geometrică, pentru a studia diferite clase de funcţii.

Printre proprietăţile care au fost studiate pentru funcţiile de o variabilă complexă,

se numără aşa numita proprietate de univalenţă. O funcţie analitică (olomorfă) şi in-

jectivă pe domeniul U , U ⊂ C, U = {z ∈ C : |z| < 1} se numeşte funcţie univalentă ı̂n

U . Condiţia f ′(z) 6= 0, ∀z ∈ U , este doar o condiţie necesară de univalenţă, asigurând

o univalenţă locală. Obiectivul este acela de a găsi condiţii suplimentare care să asigure

univalenţă funcţiei f , ı̂n U . Prin urmare, este de dorit să obţinem condiţii necesare şi

suficiente de univalenţă. Din punct de vedere geometric, funcţiile univalente sunt legate

de transformările conforme.

Fiind unul dintre conceptele de bază ı̂n teoria geometrică a funcţiilor, funcţia uni-

valentă (olomorfă şi injectivă) a fost studiată, ı̂ncă din 1907, de către P. Koebe. Timp

de un secol, teoria univalentă a funcţiilor s-a dezvoltat considerabil. Condiţii necesare şi

suficente au fost obţinute pentru prima dată, ı̂n 1931 de către Gh. Călugareanu, după

care univalenţa a fost studiată de mulţi alţi matematicieni, printre care ı̂i amintim aici

pe Z. Nehari, C. Pomerenke, A.W. Goodman, G. M. Goluzin, etc. ([42], [65])). Am-

intim de asemenea câteva lucrări clasice ı̂n domeniu, cum ar fi Conformal mappings,
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1952, L.V. Ahlfors, Conformal invariants, Topics in Geometric funcţion Theory, 1973,

Ch. Pommerenke, Univalent funcţions, 1975, A.W. Goodman, Univalent functions, 1984,

S.S. Miller, P.T. Mocanu, Differential Subordinations, Theory and Applications, 2000. În

România există o importantă şcoală de cercetare ı̂n domeniu, fondată de P.T. Mocanu,

având un impact important asupra şcolii internaţionale de cercetare. Printre direcţiile rel-

ativ recente de cercetare o amintim pe cea bazată pe subordonări diferenţiale, introduse

de P.T. Mocanu şi S.S. Miller ([63]).

Cu toate că teoria geometrică a funcţiilor este considerată un domeniu teoretic,

există şi câteva aplicaţii practice ale acesteia ı̂n domenii precum mecanica fluidelor, elec-

trotehnica, fizica nucleară şi altele.

Un subiect important de cercetare ı̂n acest domeniu este cel dat de studiul op-

eratorilor integrali pe spaţii de funcţii analitice ([7], [81]). Primul matematician care a

introdus un operator integral pe clase de funcţii univalente a fost J.W. Alexander, ı̂n 1915.

În ultimul secol, operatorii integrali au fost studiaţi de mai mulţi matematicieni, printre

care ı̂i amintim aici pe R. Libera, S. Bernardi, S.S. Miller, P.T. Mocanu, M.O. Reade,

R. Singh, N.N. Pascu şi alţii. În prezent, noi aspecte ale operatorilor integrali stimulează

interesul tinerilor cercetători din domeniul teoriei geometrice a funcţiilor.

Contribuţia noastră la acest domeniu a ı̂nceput ı̂n 2000, prin colaborarea cu D.

Breaz ı̂mpreună cu care am lucrat la extinderea unor operatori integrali cunoscuţi şi am

demonstrat proprietăţile noilor operatori introduşi, pe diferite clase de funcţii analitice.

Primele rezultate semnificative le-am obţinut ı̂n 2002 ([9] şi [10]), operatorii integrali in-

troduşi ı̂n acele lucrări fiind citaţi ı̂n peste 100 de articole ştiinţifice scrise de matematicieni

din ţară şi străinătate. De-a lungul anilor am publicat ı̂n acest domeniu o serie de lucrări

şi o carte (see [5], [8]-[39], [43], [82]-[86], [96], [100], aceasta fiind doar o listă selectivă).

Cartea coni̧ne studii recente pe operatori integrali univalenţi, şi a fost scrisă ca urmare a

unei colaborări cu Daniel Breaz de la Universitatea ”1 Decembrie 1918” din Alba Iulia şi

Maslina Darus de la Universitatea Kebangsaan, din Kuala Lumpur, Malaezia ([27]).

Dorim să subliniem că o parte din rezultatele ştiinţifice publicate şi prezentate ı̂n

această teză au fost obţinute de asemenea, ı̂n urma unor colaborări cu cercetători din

Japonia, Egipt, Canada, Turcia şi România, ı̂n timpul diverselor ediţii ale conferinţei

itinerante Geometric function Theory and Applications Symposium, dar şi ı̂n timpul sem-

inariilor ştiinţifice la care am luat parte ı̂n cadrul vizitelor la Universitatea Kinki, din

Osaka, Japonia (2010) respectiv, la Universitatea Kebangsaan, Kuala Lumpur, Malaezia,

2012 şi 2013. Având ı̂n vedere că am obţinut doctoratul pe o altă temă de cercetare, spri-

jinul primit de-a lungul anilor de la colaboratori a fost foarte important. În acest sens,

amintim aici numele colaboratorilor care ne-au sprijinit ı̂n cercetările din acest domeniu,

ı̂ncepând cu D. Breaz, V. Pescar şi S. Owa, cu care am publicat majoritatea lucrărilor
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şi continuând cu R. El-Ashwah, M, Darus, H. Srivastava, Y. Polatoglu, J. Nishiwaki, M.

Acu, M.K. Aouf, N. Ularu şi aļtii.

Printre rezultatele pe care le-am obţinut ı̂n acest domeniu, majoritatea prezentate

ı̂n această teză, menţionăm următoarele:

- introducerea unor operatori integrali ca extensie a unor operatori deja cunoscuţi

care se regăsesc ca şi cazuri particulare,

- studiul proprietăţilor geometrice precum univalenţă, convexitate, stelaritate pen-

tru anumiţi operatori integrali,

- studiul unor proprietăţi de conservare a unor clase de către operatorii integrali,

- extinderea criteriului de univalenţă de tip Becker la operatori integrali,

- studiul unor clase de funcţii analitice luând ı̂n considerare diverse aspecte ca spre

exemplu, produsul Hadamard pe aceste clase,

- estimări de coeficienţi pentru anumite clase de funcţii analitice,

- teoreme de distorsiune pentru anumite clase de funcţii analitice.

Aceste rezultate precum şi alte câteva idei ı̂ncă nepublicate sunt prezentate aici ı̂n

teza de abilitare, ı̂n capitolul principal dar şi ı̂n capitolul dedicat planului de cercetare.

Teza este structurată pe trei capitole, capitolul principal fiind capitolul doi care

conţine contribuţia autorului la acest domeniu, susţinut de primul capitol ı̂n care sunt

date câteva noţiuni şi rezultate suport şi urmat de cel de-al treilea, legat de planurile de

cercetare.

Capitolul 1 conţine câteva concepte şi rezultate preliminare necesare ı̂n susţinerea

prezentării rezultatelor proprii, mai precis, definiţiile unor clase de funcţii analitice deja

cunoscute, ca: funcţii univalente, stelate, convexe şi altele, precum şi câteva proprietăti ale

acestora. Sunt amintiţi de asemenea, principalii operatori integrali utilizaţi ı̂n obţinerea

operatorilor propuşi de noi, ı̂mpreună cu câteva rezultate de bază. Dorim să menţionam

că acest capitol este orientat strict pe acele rezultate clasice care au fost cel mai des

utilizate ı̂n Capitolul 2.

Capitolul 2 este dedicat contribuţiilor aduse de către autor ı̂n domeniul teoriei

geometrice a funcţiilor şi este structurat pe optsprezece secţiuni. La ı̂nceputul fiecărei

secţiuni sunt menţionate lucrările ı̂n care rezultatele descrise au fost publicate. Au fost

omise anumite demonstraţii şi rezultate secundare dar acestea pot fi găsite ı̂n lucrările

publicate, menţionate ı̂n lista bibliografică.

În Secţiunea 2.1, prezentăm patru operatori integrali generali, având ca punct de

pornire câţiva operatori integrali cunoscuţi dar fiind construiţi pe mai mult de o funcţie.

Operatorii introduşi de câtre noi acoperă operatori clasici precum cei daţi de Kim şi

Merkes, respectiv de Pfaltzgraff. Pentru aceşti operatori, am obţinut criterii de univalenţă

care generalizează criteriul de univalenţă dat de V. Pescar. Articolul ı̂n care aceste rezul-
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tate au fost publicate, [9], a ı̂nregistrat peste 100 citari, fiind un articol de referinţă ı̂n

domeniul operatorilor integrali generali, introduşi ı̂n ultimii ani de diverşi matematicieni.

În Secţiunea 2.2, am discutat câteva condiţii de stelaritate pentru operatorul lui

Bernardi şi pentru un alt operator integral general care acoperă operatorii clasici daţi de

Bernardi şi Alexander.

Două criterii de univalenţă sunt demonstrate ı̂n Secţiunea 2.3, pentru un operator

integral general, definit ca o generalizare pentru n funcţii, a unui operator dat de V.

Pescar. Atât operatorul introdus de noi cât şi cel dat de Pescar sunt operatori de tipul

Mocanu-Miller-Reade. Operatorul a fost studiat pe o clasă de funcţii univalente introdusă

de Ozaki şi Nunokawa.

Câteva proprietăţi de convexitate pentru un operator integral general de tip Kim-

Merkes sunt prezentate ı̂n Secţiunea 2.4, considerând trei clase de funcţii univalente,

introduse de Stankiewicz şi Wisniowska, respectiv de Ronning.

În Secţiunea 2.5, se studiază un criteriu de univalenţă pentru un operator integral

general introdus de Senivasagan şi Breaz, pe clasa de funcţii univalente introdusă de Ozaki

şi Nunokawa.

Câteva proprietăţi de conservare a clasei pentru un operator integral general de

tip Pfaltzgraff sunt date ı̂n Secţiunea 2.6, considerând următoarele clase de funcţii: uni-

valente, stelate, convexe, convexe de un anumit ordin, respectiv uniform convexe.

În Secţiunea 2.7, am studiat comportamentul a doi operatori integrali generali de

tip Kim-Merkes şi Pfaltzgraff pe clase de funcţii analitice de ordin complex şi tip real,

introduse de B. Frasin.

În Secţiunea 2.8 am găsit ordinul de convexitate şi estimări pentru coeficienţii a doi

operatori integrali generali, pe o anumită clasă de funcţii convexe, definite ı̂n conexiune

cu o hiperbolă.

În Secţiunea 2.9, am prezentat un rezultat referitor la univalenţa unui operator

integral general introdus de noi, pentru care numărul de funcţii aflate ı̂n componenţă este

definit prin intermediul unui număr complex.

Comportamentul operatorului integral general introdus de Senivasagan şi Breaz

este studiat ı̂n raport cu univalenţa pe subclasele de funcţii univalente S(α) si T2,µ, ı̂n

Secţiunea 2.10.

În Secţiunea 2.11, am studiat convexitatea a doi operatori integrali generali, pe

anumite clase de funcţii analitice.

Trei criterii de univalenţă au fost obţinute pentru un operator integral general

construit pe două tipuri de funcţii, regulare respectiv de tip Caratheodory, rezultatele

fiind prezentate in Secţiunea 2.12.

Condiţii suficiente de univalenţă de tip Kudriasov pentru doi dintre operatorii

12
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integrali generali introdusi de noi, unul de tip Kim-Merkes şi celălalt de tip Pfaltzgraff au

fost prezentate ı̂n Secţiunea 2.13.

Secţiunea 2.14 conţine estimări de coeficienţi şi proprietăţi legate de produsul

Hadamard modificat pentru un anumit tip de funcţii analitice, p-valente, cu coeficienţi

negativi. Acestea extind alte rezultate introduse de noi pentru clase de funcţii stelate,

respectiv convexe de ordin α, p-valente, cu coeficienţi negativi, definite cu ajutorul unui

operator diferenţial.

În Secţiunea 2.15, obţinem noi condiţii de univalenţă pentru doi operatori integrali

generali, Tn si Bn, aplicând o versiune a criteriului de univalenţă al lui Becker, dată de

Pascu ı̂n [76]. De asemenea, este folosit şi rezultatul dat de Mocanu şi Şerb ı̂n [66].

Secţiunea 2.16 prezintă o nouă clasă de funcţii analitice şi p-valente bazate pe

derivate de ordin multiplu. Pentru această clasă de funcţii p-valente obţinem câteva

proprietăţi interesante incluzând inegalităţi pentru coeficienţi, teoreme de distorsiune,

puncte de extrem, raze de aproape convexitate, stelaritate şi convexitate. De asemenea,

pe această clasă, am prezentat şi câteva aplicaţii ale unui operator integral. În final,

ob̧tinem şi câteva rezultate referitoare la produsul Hadamard modificat pe clasa de funcţii

p-valente propusă.

Folosind transformări Möbius obţinem câteva proprietăţi şi exemple pe calcul

fracţional, ı̂n Secţiunea 2.17.

În Secţiunea 2.18, aplicând funcţia extremală a subclasei de funcţii analitice, S∗(α),

şi folosind definiţia subordonărilor diferenţiale, sunt introduse noi clase, P∗(α) şi Q∗(α),

pentru care prezentăm câteva proprietăţi.

Capitolul 3 include un plan pentru cercetările curente şi viitoare, ı̂n domeniul

ştiinţific şi profesional. Ne propunem să continuăm cercetările ı̂n domeniul teoriei geo-

metrice a funcţiilor, atât pe operatori integrali, cât şi pe diverse clase de funcţii analitice.

În acelaşi timp, vom continua să acordăm interes şi aplicaţiilor bazate pe funcţii spline ı̂n

statistică, acesta fiind cel de-al doilea domeniu de interes, pe care a fost elaborată teza

de doctorat. Avem ı̂n vedere şi organizarea unor seminarii ştiintifice dedicate doctor-

anzilor din domeniul teoriei geometrice a funcţiilor, precum şi elaborarea unei monografii

ı̂n domeniu, care să conţină rezultatele proprii.

În ce priveşte obiectivele de cercetare, motivaţi de rezultatele recente din dome-

niul teoriei geometrice a funcţiilor şi dorind să continuăm propriile cercetări, descrise ı̂n

Capitolul 2, ne vom orienta asupra a trei direcţii generale de cercetare şi anume:

- studiul unor noi proprietăţi geometrice pentru operatorii consideraţi ı̂n această

teză, ı̂n raport cu univalenţa (direcţia de cercetare A),

- construcţia unor noi operatori integrali care acoperă operatorii deja cunoscuţi ca

şi cazuri particulare (direcţia de cercetare B),

13
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- construcţia de clase de funcţii analitice având proprietăţi geometrice interesante

(direcţia de cercetare C).

În cadrul primei direcţii de cercetare, A, urmărim să extindem rezultatele pe care

le-am obţinut pentru operatorii integrali J1 - J8, majoritatea pe univalenţă (̂ın Capitolul

2), investigând şi alte proprietăţi ale operatorilor ca de exemplu, convexitatea şi stelari-

tatea. Ca abordare, vom considera anumite clase de funcţii analitice pe care vom studia

comportamentul operatorilor respectivi. Pentru direcţia de cercetare B, intenţionăm să

analizăm existenţa fiecărui operator introdus, ı̂n sensul bine definirii acestuia şi să găsim şi

alte motivaţii dincolo de generalitatea lor, luând ı̂n considerare posibile aplicaţii şi câteva

exemple particulare, iar ı̂n cele din urmă să investigăm proprietăţile acestora. Legat

de direcţia de cercetare C, pentru fiecare clasă de funcţii introdusă, avem ı̂n vedere cel

puţin următoarele linii de studiu: găsirea unor exemple de funcţii care să dovedească

netrivialitatea, studiul produsului Hadamard (sau versiuni modificate) pe aceste clase,

caracterizarea prin estimări de coeficienţi, şi respectiv, găsirea unor proprietăţi de conser-

vare a claselor pentru anumiţi operatori integrali. Toate aceste direcţii de cercetare sunt

prezentate pe scurt ı̂n Secţiunea 3.1, menţionând problemele generale care necesitâ a fi

rezolvate, exemple concrete de probleme precum şi metodele de rezolvare care urmează a

fi abordate.

Anumite rezultate care fac parte din munca de cercetare curentă sunt prezentate ı̂n

ultimele două secţiuni ale capitolului. Astfel, pe termen scurt, ne propunem să finalizăm

proiectul de cercetare ı̂nceput cu V. Pescar şi D. Breaz, ı̂n direcţia găsirii de aplicaţii

pentru operatori integrali univalenţi ı̂n domeniul mecanicii fluidelor. Câteva rezultate

referitoare la univalenţa soluţiei problemei inverse pe frontieră, obţinute ı̂mpreună cu V.

Pescar, sunt descrise ı̂n Secţiunea 3.2. De asemenea, ne propunem să finalizăm proiectul

de cercetare ı̂nceput cu S. Owa, J. Nishiwaki si D. Breaz, legat de studiul unor clase de

funcţii analitice utilizând subordonări diferenţiale. Aceste clase sunt construite pornind

de la definiţia stelarităţii respectiv a convexităţii, anumite rezultate deja acceptate spre

publicare, fiind descrise ı̂n Secţiunea 3.3.

Alte direcţii de cercetare pe care le avem ı̂n vedere sunt legate de următoarele

aspecte: extinderea altor criterii de univalenţă de la funcţii la operatori integrali, ı̂n

aceeaşi manieră ı̂n care am lucrat cu criteriul de univalenţă dat de Pascu, ı̂n cadrul

rezultatelor prezentate ı̂n Capitolul 2, studiul unor operatori integro-diferenţiali, analiza

rezultatelor deja obţinute prin prisma găsirii funcţiilor extremale, găsirea unor aplicaţii

pentru rezultatele teoretice obţinute (ca spre exemplu, cea din Secţiunea 3.2) şi utilizarea

unor soft-uri specializate, ı̂n vederea evidenţierii unor proprietăţi geometrice ale imaginilor

operatorilor integrali.
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Chapter 1

Basic concepts

1.1 Classes of analytic functions

In this section we recall definitions and properties of those classes of analytic functions

that will be of interest in the whole thesis. (see Mocanu et al, [65])

Definition 1.1.1.We consider and denote by A, the class of analytic functions

(holomorphic) in the open unit disk, U = {z ∈ C : |z| < 1}, as the class of functions

having the form

f(z) = z +
∞∑
k=2

akz
k, (1.1.1)

normalized by the conditions f(0) = f ′(0)− 1 = 0 (regular function).

One of the main concept in geometric function theory is the univalent function

(holomorphic and injective), concept that was studied for the first time by P. Koebe, in

1907).

Definition 1.1.2. An analytic (holomorphic) and injective function on the domain

U , U ⊂ C, U = {z ∈ C : |z| < 1} is called an univalent function on U . We denote by S,

S ⊂ A, the class of univalent functions in the open unit disk.

Remark 1.1.3. (see [65]) The necessary condition for a function to be univalent is to

have not nule derivative, f ′(z) 6= 0,∀z ∈ U .

Necessary and sufficient conditions for univalence were obtained for the first time in

1931 by Gh. Calugareanu, after that being studied by many authors, among we recall here
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Z. Nehari, C. Pomerenke, A.W. Goodman, G. M. Goluzin, etc. ([42], [65])), more recent

research directions being based on the theory of differential subordinations introduced by

P.T. Mocanu and S.S. Miller ([63]).

Definition 1.1.4. Let f, g be holomorphic functions. We say that f is subordinated to

g, f ≺ g if there exists a holomorphic function w, with w(0) = 0 and |w(z)| < 1, z ∈ U ,

such that f(z) = g [w(z)], z ∈ U .

Remark 1.1.5. (see [65]) For f, g holomorphic functions and g univalent function, it

holds: f ≺ g ⇔ f(0) = 0 and f(U) ⊆ g(U).

In what follows, we recall some univalence criteria and other usefull lemmas that we

need for proving the results from the next chapters.

Lemma 1.1.6. (Ozaki-Nunokawa Lemma, [81]) If f ∈ A satisfies the condition∣∣∣∣z2f ′ (z)

f 2 (z)
− 1

∣∣∣∣ ≤ 1, z ∈ U (1.1.2)

then f is univalent in U .

Lemma 1.1.7. (Becker Lemma, [81]) If the function f is regular in the open unit

disk U ,f (z) = z + a2z
2 + ... and

(
1− |z|2

) ∣∣∣∣zf ′′ (z)

f ′ (z)

∣∣∣∣ ≤ 1 (1.1.3)

for all z ∈ U , then the function f is univalent in U .

Lemma 1.1.8. (Ahlfors-Becker Lemma, [81]) Let c be a complex number, |c| ≤
1, c 6= −1. If f(z) = z + a2z

2 + .... is a regular function in U and∣∣∣∣c |z|2 +
(
1− |z|2

) zf ′′(z)

f ′ (z)

∣∣∣∣ ≤ 1, (1.1.4)

for all z ∈ U , then the function f is univalent in U .

Lemma 1.1.9. (Generalized Schwarz Lemma, [81]) Let f be a regular function

in the disk having the radius R, UR = {z ∈ C; |z| < R} , with |f(z)| < M, M fixed. If f

has in z = 0 one zero with multiplicity ≥ m, then
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|f(z)| < M

Rm
|z|m , z ∈ UR (1.1.5)

the equality (for z 6= 0) takes place only for f(z) = eiθ M
Rm

zm,, where θ is a constant.

Among the classes of univalent functions, the most used are those having geometric

properties, the class of convex functions, respectively, the class of starlike functions. We

recall here the definitions of these classes and also the definitions of some other classes of

analytic functions by using their analytic characterization (see [65]).

Definition 1.1.10. We call the class of starlike functions of order α, 0 ≤ α < 1, the

class of functions satisfying the following analytic condition:

S∗ (α) =

{
f ∈ A : Re

{
zf ′ (z)

f (z)

}
> α, z ∈ U

}
. (1.1.6)

Remark 1.1.11. The class of starlike functions of order α was introduced by Robert-

son. For α = 0, we have the class of starlike functions introduced by Alexander (see [65]).

Definition 1.1.12. We call the class of convex functions of order α, 0 ≤ α < 1, the

class of functions satisfying the following analytic condition:

K (α) =

{
f ∈ A : Re

{
zf ′′ (z)

f ′ (z)
+ 1

}
> α, z ∈ U

}
. (1.1.7)

Remark 1.1.13. The class of convex functions of order α was introduced by Robert-

son. For α = 0, we have the class of convex functions introduced by Study (see [65]).

Definition 1.1.14. We call the class of Caratheodory functions, the class of functions

satisfying the following analytic condition:

P = {f analytic : f(0) = 1, Re f(z) > 0, z ∈ U} . (1.1.8)
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The following lemma (Mocanu and Şerb Lemma) constitutes a criterion for a func-

tion to be in a subclass of starlike function, hence it is also a criterion of starlikeness and

consequently, a criterion of univalence.

Lemma 1.1.15. (Mocanu and Şerb Lemma, ([66]) Let M0 = 1.5936... the positive

solution of equation

(2−M)eM = 2. (1.1.9)

If f ∈ A and ∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ ≤M0, z ∈ U, (1.1.10)

then ∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1, z ∈ U. (1.1.11)

The bound M0 is sharp.

Lemma 1.1.16. (Nehari Lemma, ([68]) If the function g is regular in U and

|g (z)| < 1 in U , then for all ξ ∈ U and z ∈ U , the following inequalities hold:∣∣∣∣∣ g (ξ)− g (z)

1− g (z)g (ξ)

∣∣∣∣∣ ≤ |ξ − z||1− z̄ξ|
, (1.1.12)

|g′ (z)| ≤ 1− |g (z)|2

1− |z|2
. (1.1.13)

The equalities hold only in the case g (z) = ε(z+u)
1+ūz

, where |ε| = 1 and |u| < 1.

Remark 1.1.17. (Nehari Remark, ([68]) For z = 0, from the inequality (1.1.12),

we have ∣∣∣∣∣ g (ξ)− g (0)

1− g (0)g (ξ)

∣∣∣∣∣ ≤ |ξ| (1.1.14)

and hence

|g (ξ)| ≤ |ξ|+ |g (0)|
1 + |g (0)| |ξ|

. (1.1.15)

Considering g (0) = a and ξ = z, we have

|g (z)| ≤ |z|+ |a|
1 + |a| |z|

. (1.1.16)

for all z ∈ U .
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1.2. Integral operators

Lemma 1.1.18. (Kudriasov Lemma, [65]) Let f ∈ A. If∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ ≤ K, z ∈ U, (1.1.17)

for all z ∈ U , where K ∼= 3.05 (see the Remark 1.1.19), then the function f is univalent

in U .

Remark 1.1.19. (Kudriasov Remark, [65]) The constant K is a solution of the

ecuation,

8
[
x (x− 2)3] 1

2 − 3 (4− x)2 = 12. (1.1.18)

The Kudriasov result is not sharp, but the maximum value M for which the Kudriasov

condition implies univalence is proved to be M ∈ [K, π], since the function f (z) = eλ·z is

univalent if and only if |λ| ≤ π (see [65]).

Lemma 1.1.20. (Mocanu Lemma, [65]) Let be f ∈ A. If∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ ≤M, z ∈ U, (1.1.19)

for all z ∈ U , where M ∼= 2.83, then the function f is starlike in U .

Remark 1.1.21. (Mocanu Remark, [65]) The constant M is M =
√

1 + y2
0, where

y0 is the smallest positive root of the equation,

ysiny + cosy =
1

e
. (1.1.20)

The same criterion of starlikeness (and consequently, criterion of univalence) was obtained

by V. Anisiu and P.T. Mocanu in the paper [3], using different methods of proving.

1.2 Integral operators

An important field in geometric function theory is given by the study of integral oper-

ators on spaces of analytic functions), the first mathematician who introduced an integral

operator on a class of univalent functions being J.W. Alexander, in 1915.

In this section we recall some well known integral operators that were used as a basis to

define our new introduced integral operators and also, a few classical univalence criteria
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1.2. Integral operators

that were the most used in this thesis, in order to prove our results. Other known results

will be recalled within the next chapters, only in the sections where they are needed.

The integral operators bellow are mentioned by their analytic formula and a denotation

that is used all over the thesis, mentioning also the mathematicians who introduced them.

More details on these operators can be found in various books in the literature, as for

example in the books of D. Breaz et al, [7] and [81].

• Alexander operator, 1915

I1 (f) (z) =

∫ z

0

f (t)

t
dt (1.2.1)

• Kim-Merkes operator (also atributed to Causey), 1963, α complex number

I2 (f) (z) =

∫ z

0

[
f (t)

t

]α
dt (1.2.2)

• Libera operator, 1965

I3 (f) (z) =
2

z

∫ z

0

f (t) dt (1.2.3)

• Bernardi operator, 1969, γ complex number

I4 (f) (z) =
1 + γ

zγ

∫ z

0

f (t) tγ−1dt (1.2.4)

• Pfaltzgraff operator, 1975, α complex number

I5 (f) (z) =

∫ z

0

[f ′ (t)]
α
dt (1.2.5)

• Mocanu-Miller-Reade operator, 1978, α, β, γ, δ, complex numbers, β 6= 0, α + δ =

β + γ,Re(α+ δ) > 0, Φ, ϕ functions of the form g(z) = z +
∞∑
k=n

akz
k, Φ(z)ϕ(z) 6= 0, z ∈ U
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1.2. Integral operators

I6 (f) (z) =

[
β + γ

zγΦ (z)

∫ z

0

fα (t)ϕ (t) tδ−1dt

] 1
β

(1.2.6)

Over the years, many mathematicians have studied the univalence of these and other

integral operators, among we recall here the following two results:

Lemma 1.2.1. (N.N. Pascu univalence criterion, ([76]) Fie α ∈ C,Reα > 0,

f ∈ A. If
1− |z|2Reα

Reα

∣∣∣∣zf ′′ (z)

f ′ (z)

∣∣∣∣ ≤ 1, ∀z ∈ U (1.2.7)

then for ∀β ∈ C,Reβ ≥ Reα, we have

Fβ (z) =

β z∫
0

tβ−1f ′ (t) dt

1/β

∈ S. (1.2.8)

Lemma 1.2.2. (Pescar univalence criterion, ([79]) Let α, c complex numbers,

Reα > 0, |c| ≤ 1, c 6= −1 and f a regular function U . If∣∣∣∣c |z|2α +
(
1− |z|2α

) zf ′′(z)

αf ′(z)

∣∣∣∣ ≤ 1, z ∈ U (1.2.9)

then

Fα (z) =

α z∫
0

uα−1f ′ (u) du

 1
α

∈ S. (1.2.10)
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Chapter 2

Contributions

2.1 General integral operators

In the papers [9], [10], together with D. Breaz, we introduced four integral operators

which extend some of the classical operators recalled in the previous chapter, by using

more than one function in the construction of the operators. For these operators, we

obtained univalence criteria which generalize the univalence criteria given by V. Pescar,

respectiely V. Pescar and S. Owa. The paper [9] has over 100 citations, being a reference

for other new integral operators that in the meantime were defined by us or by other

mathematicians. In what follows, we present these integral operators, by mentioning the

type of them and also the authors who’s integral operator was generalized by ours:

• Kim-Merkes type operator - generalization of Kim-Merkes operator

J1(z) =

z∫
0

(
f1 (t)

t

)α1

· ... ·
(
fn (t)

t

)αn
dt (2.1.1.)

Remark 2.1.1. The operator (1.2.2), introduced by Kim and Merkes can be obtained

for n = 1.

• Kim-Merkes type operator - generalization of Pascu - Pescar operator

J2(z) =

β z∫
0

tβ−1

(
f1 (t)

t

)α1

· ... ·
(
fn (t)

t

)αn
dt

 1
β

(2.1.2.)

Remark 2.1.2. For n = 1, we get the integral operator introduced by N.N. Pascu

and V. Pescar (see [81]).
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2.1. General integral operators

• Pfaltzgraff type operator - generalization of Pascu - Pescar, respectively Pescar- Owa

operators

J3(z) =

β
z∫

0

tβ−1 · [f ′1 (tn)]
γ1 · ... ·

[
f ′p (tn)

]γp
dt


1/β

(2.1.3.)

Remark 2.1.3. For p = 1, β = 1, we get the integral operator introduced by N.N.

Pascu and V. Pescar, respectively, for p = 1, we recover the operator introduced by V.

Pescar and S. Owa (see [81]).

• Pfaltzgraff type operator - generalization of Pascu, respectively Pescar-Owa opera-

tors

J4(z) =

β
z∫

0

tβ−1 · [f ′1(t)]
γ1 · ... · [f ′n(t)]

γn dt


1/β

(2.1.4.)

Remark 2.1.4. For n = 1, γ1 = 1, we get the integral operator introduced by N.N.

Pascu, respectively, for n = 1, we recover the operator introduced by V. Pescar and S.

Owa (see [81]).

We recall here only one result as an example of the univalence criteria that we ob-

tained, the others being accesible through the papers [9], [10], together with the proofs.

Theorem 2.1.5. ([9]) Let αn ∈ C, fn ∈ S, fn (z) = z + an2z
2 + an3z

3 + ..., n ∈ N∗. If∣∣∣∣zf ′n (z)− fn (z)

zfn (z)

∣∣∣∣ ≤ 1, ∀n ∈ N∗, ∀z ∈ U , (2.1.5)

|α1|+ |α2|+ ...+ |αn|
|α1 · α2 · ... · αn|

≤ 1, (2.1.6)

|α1 · α2 · ... · αn| ≤
1

max|z|≤1

[(
1− |z|2

)
· |z| · |z|+|c|

1+|c|·|z|

] , (2.1.7)

where

|c| = |α1a
1
2 + ...+ αna

n
2 |

|α1 · α2 · ... · αn|
, (2.1.8)
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2.2. Starlikeness condition for Bernardi operator

then

J1(z) =

z∫
0

(
f1 (t)

t

)α1

· ... ·
(
fn (t)

t

)αn
dt

is univalent.

Proof. In order to prove this result it is sufficient to apply Becker’s univalence criterion,

Lemma 1.1.7 (see [9]) .

2.2 Starlikeness condition for Bernardi operator

In the paper [11], together with D. Breaz, we studied the starlikeness of the Bernardi

operator defined in the formula (1.2.4) and we got the following main result:

Theorem 2.2.1. ([11]) Let γ ≥ 0, 0 ≤ a ≤ 1,−1 ≤ b ≤ 0 be real numbers and let be

the function

h (z) =
1 + az

1 + bz
+

n (a− b) z
(1 + bz) (1 + γ + (a+ bγ) z)

. (2.2.1)

If

f ∈ An, (f (z) = z + an+1z
n+1 + an+2z

n+2 + ...), z ∈ U

and

zf ′ (z)

f (z)
≺ h (z) (2.2.2)

then

I4 ∈ S∗
(

1− a
1− b

)
.

Proof. In order to prove the starlikeness, we need to apply differential subordinatons

(see [11]).

In the same paper, we considered the following more general integral operator:

FΣ (z) =
1 +

∑k
i=1 βi

z
∑k
i=1 βi

∫ z

0

(
k∏
i=1

fi (t)

)
t
∑k
i=1(βi−1)dt, βi ≥ 0, i = ¯1, k. (2.2.3)

Remark 2.2.2. It can be easily noticed that by chosing suitable values of the pa-
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2.3. The univalence of Mocanu-Miller-Reade type operator on the Ozaki-Nunokawa
class

rameters that define the integral operator from above, we can obtain as particular cases,

both operators (1.2.1) and (1.2.4), the integral operators introduced by Alexander and

respectively, by Bernardi.

In the paper [11], we obtained for this general operator, a similar starlikeness

condition as that presented in Theorem 2.2.1, thus the result covers starlikeness conditions

for both Bernardi and Alexander operators.

2.3 The univalence of Mocanu-Miller-Reade type op-

erator on the Ozaki-Nunokawa class

In the papers [26] and [14], together with D. Breaz and H. M. Srivastava, we proved

two univalence criteria of an integral operator defined as a generalization for n functions

of an operator given by V. Pescar. Both ours and Pescar operators are particular cases of

Mocanu-Miller-Reade operator, (1.2.6), hence we call them here as Mocanu-Miller-Reade

type operators. The operator was studied on a class of univalent functions, introduced

by Ozaki and Nunokawa, defined by the formula (2.3.2). The general integral operator

introduced and studied by us is defined as follows:

• Mocanu-Miller-Reade type operator - generalization of Pescar operator

J5(z) =

[n (α− 1) + 1]

z∫
0

gα−1
1 (t) · ... · gα−1

n (t) dt


1

n(α−1)+1

(2.3.1)

Theorem 2.3.1. ([14]) Let M ≥ 1, gi ∈ A, ∀ i = 1, n, n ∈ N∗ satisfying Ozaki-

Nunokawa condition, ∣∣∣∣z2g′i(z)

g2
i (z)

− 1

∣∣∣∣ ≤ 1, ∀ z ∈ U , ∀ i = 1, n (2.3.2)

and α ∈ C, satisfying conditions

|α− 1| ≤ Reα

n (2M + 1)
,

Re {n (α− 1) + 1} ≥ Reα. (2.3.3)

If
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2.4. Convexity properties for a general integral operator on some classes of univalent
functions

|gi(z)| ≤M, ∀ z ∈ U,∀ i = 1, n, (2.3.4)

then J5(z) is univalent.

Proof. We apply Schwarz Lemma, 1.1.9 and N.N. Pascu univalence criterion for in-

tegral operators, Lemma 1.2.1.

Theorem 2.3.2. ([26]) Let M ≥ 1, gi ∈ A, ∀ i = 1, n, n ∈ N∗ satisfying Ozaki-

Nunokawa condition, ∣∣∣∣z2g′i(z)

g2
i (z)

− 1

∣∣∣∣ ≤ 1, ∀ z ∈ U , ∀ i = 1, n (2.3.5)

and α ∈ R, satisfying conditions

1 ≤ α ≤ (2M + 1)n

(2M + 1)n− 1
(2.3.6)

If c ∈ C, with

|c| ≤ 1 +

(
1− α
α

)
(2M + 1)n (2.3.7)

and

|gi(z)| ≤M, ∀ z ∈ U,∀ i = 1, n, (2.3.8)

then J5(z) is univalent.

Proof. In order to prove the univalence, we apply the univalence criterion of Ahlfors-

Becker type, given by Pescar, Lemma 1.2.2.

2.4 Convexity properties for a general integral oper-

ator on some classes of univalent functions

The results from this section are based on the paper [15]. Together with D. Breaz,

we have studied convexity properties for the following general integral operator of Kim-

Merkes type, introduced by us:

• Kim-Merkes type operator - generalization of Kim-Merkes operator
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2.4. Convexity properties for a general integral operator on some classes of univalent
functions

J1(z) =

z∫
0

(
f1 (t)

t

)α1

· ... ·
(
fn (t)

t

)αn
dt (2.4.1)

The following classes of univalent functions were used:

• Stankiewicz-Wisniowska class SH (β), β > 0, ([98])

SH (β) =

{
f ∈ S :

∣∣∣∣zf ′ (z)

f (z)
− 2β

(√
2− 1

)∣∣∣∣ < Re

{√
2
zf ′ (z)

f (z)

}
+ 2β

(√
2− 1

)
, z ∈ U

}
(2.4.2)

• SP , Ronning class

SP =

{
f ∈ S : Re

{
zf ′ (z)

f (z)

}
>

∣∣∣∣zf ′ (z)

f (z)
− 1

∣∣∣∣ , z ∈ U} (2.4.3)

• Ronning class SP (α, β), α > 0, β ∈ [0, 1)

SP (α, β) =

{
f ∈ S :

∣∣∣∣zf ′ (z)

f (z)
− (α + β)

∣∣∣∣ ≤ Re

{
zf ′ (z)

f (z)

}
+ α− β, z ∈ U

}
(2.4.4)

Theorem 2.4.1.([15]) Let αi, i ∈ {1, ..., n} be real numbers with the property αi > 0,

i ∈ {1, ..., n} and

n∑
i=1

αi ≤
√

2

2β
(√

2− 1
)

+
√

2
. (2.4.5)

If fi ∈ SH (β), i = {1, ..., n}, β > 0, then the integral operator J1 is convex.

Proof. In order to prove the convexity, we need to apply the analytic characterization

of a convex function.

Theorem 2.4.2.([15]) Let αi, i ∈ {1, ..., n} be real numbers, having the property

αi > 0, i ∈ {1, ..., n} and
∑n

i=1 αi < 1. Daca fi ∈ SP, i = {1, ..., n},then the integral

operator J1 is convex of order 1−
∑n

i=1 αi.
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2.5. Univalence criterion for Senivasagan-Breaz integral operator

Proof. We apply the analytic characterization of convex functions of a given order,

(1.1.7).

Corollary 2.4.3.([15]) The Alexander operator maps the functions from the class SP
in the class of convex functions.

Theorem 2.4.4.([15])] Let αi, i ∈ {1, ..., n} be the real numbers having the property

αi > 0, i ∈ {1, ..., n} and

n∑
i=1

αi <
1

α− β + 1
(2.4.6)

If fi ∈ SP (α, β), i = {1, ..., n}, α > 0, β ∈ [0, 1), then the integral operator J1 is

convex of order (β − α− 1)
∑n

i=1 αi + 1.

2.5 Univalence criterion for Senivasagan-Breaz inte-

gral operator

In the paper [19], we proved an univalence criterion and some secondary results for

the following Kim-Merkes type operator, introduced by Senivasagan-Breaz in 2007:

Hγ1,γ2,...,γn,β(z) =

β z∫
0

uβ−1

n∏
j=1

(
fj (u)

u

) 1
γj

du

 1
β

, (2.5.1)

where fj ∈ A, β, γj complex numbers, β 6= 0, γj 6= 0, j = 1, n, n ∈ N− {0}.

The operator is studied on the class of univalent functions given by Ozaki and Nunokawa,

using the condition (2.5.2). Here we recall only the main result.

Theorem 2.5.1. ([19]) Let M ≥ 1, fj ∈ A, satisfying Ozaki-Nunokawa condition,∣∣∣∣z2f ′j(z)

f 2
j (z)

− 1

∣∣∣∣ ≤ 1, ∀ z ∈ U , ∀ j = 1, n, (2.5.2)

β real number, with

β ≥
n∑
j=1

(2M + 1) / |γj| (2.5.3)
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2.6. Class preserving properties for a Pfaltzgraff type general integral operator

and c, complex number. If

|c| ≤ 1− 1

β

n∑
j=1

2M + 1

|γj|
(2.5.4)

and

|fj (z)| ≤M,∀ j = 1, n, (2.5.5)

then the operator, Hγ1,γ2,...,γn,β is in the class S.

Proof. We apply Schwarz Lemma, 1.1.9 and the univalence criterion of Ahlfors-Becker

type, given by Pescar, Lemma 1.2.2.

2.6 Class preserving properties for a Pfaltzgraff type

general integral operator

In the paper [29], we introduced and studied together with D. Breaz and S. Owa, a new

general integral operator of Pfaltzgraff type, obtaining some class preserving conditions,

on various classes as univalent, starlike, convex, convex of a given order and respectively,

uniformly convex functions classes.

The following operator was considered:

J6 (z) =

∫ z

0

(f ′1 (t))
α1 ... (f ′n (t))

αn dt, αi > 0. (2.6.1)

Besides the classes recalled in the Section 1.1, we used also the class of uniform convex

functions, introduced by Goodman as follows:

UCV =

{
f ∈ A : Re

{
1 +

zf ′′ (z)

f ′ (z)

}
≥
∣∣∣∣zf ′′ (z)

f ′ (z)

∣∣∣∣ , z ∈ U} . (2.6.2)

Next result gives an univalence criterion for the operator (2.6.1):

Theorem 2.6.1. ([29]) Let αi ≥ 0, fi ∈ A, i ∈ {1, ..., n}, satisfying the Kudriasov

condition,
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2.6. Class preserving properties for a Pfaltzgraff type general integral operator

∣∣∣∣f ′′i (z)

f ′i (z)

∣∣∣∣ ≤ K (z ∈ U), i ∈ {1, ..., n} , (2.6.3)

where K = 3.05... and
n∑
i=1

αi ≤ 1, then J6 ∈ S.

Proof. In order to prove the univalence we apply Kudriasov Lemma, 1.1.18.

In what follows, a starlikeness theorem is presented:

Theorem 2.6.2. ([29]) Let αi ≥ 0, fi ∈ A, i ∈ {1, ..., n}, satisfying Mocanu condi-

tion, ∣∣∣∣f ′′i (z)

f ′i (z)

∣∣∣∣ ≤M (z ∈ U), i ∈ {1, ..., n} , (2.6.4)

where M = 2.83... and
n∑
i=1

αi ≤ 1, then J6 ∈ S∗.

Proof. To prove the starlikness, Mocanu Lemma, 1.1.20 was used.

The integral operator that we studied preserves also the class of convex functions, as

it can be seen in the next result:

Theorem 2.6.3. ([29]) Let αi ≥ 0, fi ∈ K, i ∈ {1, ..., n}, then J6 ∈ K.

Proof. We apply the analythic characterization of the convexity recalled in the Sec-

tion 1.1.

In the next theorem, we prove the convexity of a given order for our integral operator:

Theorem 2.6.4. ([29]) Let αi ≥ 0, fi ∈ K (βi), 0 ≤ βi < 1, i ∈ {1, ..., n}. If
n∑
i=1

αi (βi − 1) + 1 ≥ 0, then J6 ∈ K
(

n∑
i=1

αi (βi − 1) + 1

)
.

Proof. To prove this result, we use the analythic characterization of the convexity of

a given order, (1.1.7).

Finally, we found also conditions for the integral operator to be uniformly convex:

Theorem 2.6.5. ([29]) Let αi ≥ 0, fi ∈ UCV, i ∈ {1, ..., n}. If
n∑
i=1

αi ≤ 1, then

J6 ∈ K
(

1−
n∑
i=1

αi

)
.

Proof. The analythic characterization of the uniform convexity, (2.6.2), is applied.
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2.7. The behaviour of two general integral operators on functions of complex order and
real type

2.7 The behaviour of two general integral operators

on functions of complex order and real type

In the paper [8], together with D. Breaz and M.K. Aouf we studied the behaviour

of the following general integral operators, of type Kim-Merkes and Pfaltzgraff, on some

classes of analytic functions of complex order and real type:

• Kim-Merkes type general integral operator Breaz-Breaz

J1(z) =

z∫
0

(
f1 (t)

t

)α1

· ... ·
(
fn (t)

t

)αn
dt (2.7.1.)

• Pfaltzgraff type general integral operator Breaz-Owa-Breaz

J6 (z) =

∫ z

0

(f ′1 (t))
α1 ... (f ′n (t))

αn dt (2.7.2)

B. Frasin introduced the so-called classes of analytic functions of complex order and

real type:

• The class of starlike functions of complex order b and real type α, S∗α(b), b ∈ C−{0},
0 ≤ α < 1

S∗α(b) =

{
f ∈ A : Re

{
1 +

1

b
(
zf ′ (z)

f (z)
− 1)

}
> α

}
(2.7.3)

• The class of convex functions of complex order b and real type α, Cα(b), b ∈ C−{0},
0 ≤ α < 1

Cα(b) =

{
f ∈ A : Re

{
1 +

1

b

zf ′′ (z)

f ′ (z)

}
> α

}
(2.7.4)

Remark 2.7.1 i) For b = 1, we have S∗α(1) = S∗(α), the class of starlike functions of

order α, respectively, Cα(1) = K(α), the class of convex functions of order α.

ii) For α = 0, S∗0(b), the class of starlike functions of complex order b was introduced by

Nasr and Aouf.

iii) For α = 0, C0(b), the class of convex functions of complex order b was introduced by

Wiatrowski.
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2.8. Convexity order and coefficients estimates for two general integral operators, on
convex functions related to a hyperbola

Using the analythic characterization for the above mentioned classes, we have the fol-

lowing results:

Theorem 2.7.2. ([8]) Let αi, i ∈ {1, ..., n}, be real numbers having the property

αi > 0, i ∈ {1, ..., n} and
∑n

i=1 αi ≤ 1. If fi ∈ S∗0(b), i = {1, ..., n}, b ∈ C− {0}, then the

integral operator J1 ∈ Cγ(b), where γ = 1−
n∑
i=1

αi.

Theorem 2.7.3. ([8]) Let αi, i ∈ {1, ..., n}, real numbers having the property αi > 0,

i ∈ {1, ..., n} and
∑n

i=1 αi ≤ 1. If fi ∈ C0(b), i = {1, ..., n}, b ∈ C−{0}, then the integral

operatorJ6 ∈ Cγ(b), where γ = 1−
n∑
i=1

αi.

2.8 Convexity order and coefficients estimates for two

general integral operators, on convex functions

related to a hyperbola

In the papers [100] and [32], together with N. Ularu, respectively, D. Breaz and M. Acu,

we found the convexity order for two general integral operators and obtained an estimation

for the first two coefficients of the operators, on the class of functions CVH (β), β > 0

(convex functions related to a hyperbola), introduced by M. Acu and S. Owa as follows:

CVH (β) ={
f ∈ A :

∣∣∣∣zf ′′(z)

f ′(z)
− 2β

(√
2− 1

)
+ 1

∣∣∣∣ < Re

{√
2
zf ′′(z)

f ′(z)

}
+ 2β

(√
2− 1

)
+
√

2, z ∈ U
}
.

(2.8.1)

The following two general integral operarors are considered:

• Pfaltzgraff type general integral operator Breaz-Owa-Breaz

J6 (z) =

∫ z

0

(f ′1 (t))
γ1 ... (f ′n (t))

γn dt, γi > o, i = ¯1, n. (2.8.2)
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2.8. Convexity order and coefficients estimates for two general integral operators, on
convex functions related to a hyperbola

• Pfaltzgraff/Kim-Merkes type general integral operator Pescar

K(z) =

∫ z

0

n∏
i=1

(
f
′

i (t)
)γi (gi(t)

t

)ηj
dt, ηi, γi > o, i = ¯1, n. (2.8.3)

First we get a convexity of a given order criterion for each of the operators mentioned

above, by applying the analythic characterization of the class CVH (β):

Theorem 2.8.1.([32]) If fi ∈ CVH (βi), βi > 0, γi > 0, i ∈ 1, n, then the integral

operator J6 is in the class K (α), with the condition, 0 ≤ α < 1 where

α = 1−
n∑
i=1

γi −
(

2−
√

2
) n∑
i=1

γiβi. (2.8.4)

Theorem 2.8.2.([100]) If fi ∈ CVH (βi), βi > 0, gi ∈ S∗ (αi), 0 ≤ αi < 1, γi, ηi > 0,

i ∈ 1, n, then the integral operator K is in the class K (α), with, 0 ≤ α < 1 where

α = 1−
n∑
i=1

γi −
(

2−
√

2
) n∑
i=1

γiβi +
n∑
i=1

ηi (αi − 1) . (2.8.5)

The following result gives some coefficient estimates for the operator J6, on the above

mentioned class:

Theorem 2.8.3. ([32]) Let be fi ∈ CVH (βi), βi > 0, i ∈ 1, n,

fi(z) = z +
∞∑
j=2

ai,jz
j, i = 1, n. (2.8.6)

If we consider the operator J6, with n = 1 and the analytic form of this is

J6(z) = z +
∞∑
j=2

bjz
j, (2.8.7)

then:

|b2| ≤
1

2

n∑
i=1

1 + 4βi
(1 + 2βi)

, (2.8.8)
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2.9. Univalence of a general integral operator based on a number of functions, related
to a complex number

|b3| ≤
n∑
i=1

(1 + 4βi)(3 + 16βi + 24β2
i )

12(1 + 2βi)3
+

1

3

n−1∑
k=1

(
1 + 4βk

(1 + 2βk)
·

n∑
i=k+1

1 + 4βi
(1 + 2βi)

)
. (2.8.9)

Proof. We apply the estimation obtained by M. Acu and S. Owa, for the coefficients

of the functions from the class CVH (β).

Remark 2.8.4. The estimation of the coefficient was given also for the operatorK,

in [100], for the case when both sets of functions are in the classes of type CVH (β).

2.9 Univalence of a general integral operator based

on a number of functions, related to a complex

number

Together with D. Breaz and V. Pescar, we studied in some papers, various general

integral operators for which the number of functions that compose the operator depends

on a complex number. For these operators we obtained various univalence criteria as for

example, those from [39].

We defined the following integral operator:

• Kim-Merkes type general integral operator, Breaz-Pescar-Breaz

J7(z) =

{
ηβ

∫ z

0
uηβ−1

(
f1(u)

u

) 1
γ1

. . .

(
f|[Reη]|(u)

u

) 1
γ|[Reη]|

du

} 1
ηβ

,

β, η, γj , complex numbers, γj 6= 0, β 6= 0, Reη /∈ [0, 1) , j = 1, |[Reη]|. (2.9.1)

For this operator, we recall here the following univalence criterion obtained in the paper [39]:

Theorem 2.9.1. ([39]) Let β, η, α, γj, complex numbers, γj 6= 0, β 6= 0, a = Reα > 0, Reη /∈
[0, 1) and fj ∈ S, j = 1, |[Reη]|. If

|[Reη]|∑
j=1

1

|γj |
≤ a

2
, for 0 < a <

1

2
(2.9.2)
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2.10. General integral operators, on the subclasses of univalent functions S(α) and T2,µ

or

|[Reη]|∑
j=1

1

|γj |
≤ 1

4
, for a ≥ 1

2
, (2.9.3)

then for every complex number, β,Re ηβ ≥ a, the integral operator J7 is in the class S.

Proof. To prove the univalence, we apply Becker type criterion given by N.N. Pascu, Lemma

1.2.1.

2.10 General integral operators, on the subclasses of

univalent functions S(α) and T2,µ

Together with V. Pescar, in the paper [83], we studied the behaviour of the general integral

operator (2.10.3), introduced by Senivasagan and Breaz, on the subclasses of univalent functions

S(α) and T2,µ, studied by Ozaki, Nunokawa, Yang, Liu, Singh and others.

In what follows, we recall the analytic definitions of these classes:

• The class T2,µ, 0 < µ < 1

T2,µ =

{
f ∈ S, f(z) = z +

∞∑
k=3

akz
k :

∣∣∣∣z2f ′ (z)

f2 (z)
− 1

∣∣∣∣ < µ, z ∈ U

}
(2.10.1)

• The class S(α), 0 < α ≤ 2

S(α) =

{
f ∈ A :

∣∣∣∣( z

f(z)

)′′∣∣∣∣ ≤ α, f(z) 6= 0, z ∈ U
}

(2.10.2)

and also the formula of the general integral operator of Kim-Merkes type, introduced by Seni-

vasagan and Breaz

Hγ1,γ2,...,γn,β(z) =

β z∫
0

uβ−1
n∏
j=1

(
fj (u)

u

) 1
γj

du

 1
β

, (2.10.3.)

with fj ∈ A, β, γj complex numbers, β 6= 0, γj 6= 0, j = 1, n, n ∈ N− {0}.

On the above mentioned classes, we obtained the following univalence criteria:

Theorem 2.10.1. ([83]) Let γj, α be complex numbers, γj 6= 0, j = 1, n, Reα > 0, Mj real

pozitive numbers, Mj > 1 and fj ∈ T2,µ, fj (z) = z + a3jz
3 + ..., j = 1, n.

If
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2.11. Convexity of two general integral operators on the classes of some special analytic
functions

|fj (z)| ≤Mj ,
(
z ∈ U ; j = 1, n

)
(2.10.4)

and
n∑
j=1

(µ+ 1)Mj + 1

|γj |
≤ Reα, (2.10.5)

then for any complex number, β, Reβ ≥ Reα, the function

Hγ1,γ2,...,γn,β(z) =

β
z∫

0

uβ−1

(
f1 (u)

u

) 1
γ1

...

(
fn(u)

u

) 1
γn

du


1
β

(2.10.6)

is in the class S.

Proof. We apply Schwarz Lemma 1.1.9 and the univalence criterion for integral operators

given by N.N. Pascu, Lemma 1.2.1.

Theorem 2.10.2. ([83]) Let γj be complex numbers, γj 6= 0, j = 1, n, α real pozitive

number, 0 < α ≤ 2, Mj real pozitive numbers, Mj > 1 and fj ∈ S (α), fj (z) = z + a2jz
2 +

a3jz
3 + ..., j = 1, n.

If

|fj (z)| ≤Mj ,
(
z ∈ U ; j = 1, n

)
(2.10.7)

and

α2
n∑
j=1

Mj

|γj |
+ (α+ 1)

α+1
α

n∑
j=1

Mj + 1

|γj |
≤ α (α+ 1)

α+1
α , (2.10.8)

then for any complex number β, Reβ ≥ α, the integral operator Hγ1,γ2,...,γn,β belongs to the class

S.

2.11 Convexity of two general integral operators on

the classes of some special analytic functions

In [33], together with D. Breaz and M. Darus, we studied the convexity of two of our general

integral operators, on the classes of some special analytic functions.

First, we recall the classes of analytic functions, introduced by M. Darus. It can be noticed

that for α = 0, β = 1, the classes are reduced at those introduced by Goodman, respectively,

the class of uniform convex functions and the class of uniform starlike functions:

• The class of β-uniform convex functions of order α, β − UCV(α), −1 ≤ α ≤ 1, β > 0
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2.12. Univalence of a general integral operator based on regular and Caratheodory
functions

β − UCV(α) =

{
f ∈ A : Re

{
1 +

zf ′′(z)

f ′(z)
− α

}
≥ β

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ , z ∈ U} (2.11.1)

• The class of β-uniform starlike functions of order α, β − Sp(α), −1 ≤ α ≤ 1, β > 0,

β − Sp(α) =

{
f ∈ A : Re

{
zf ′(z)

f(z)
− α

}
≥ β

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ , z ∈ U} (2.11.2)

On these classes the following general integral operators are studied:

• Kim-Merkes type general integral operator Breaz-Breaz

J1(z) =

z∫
0

(
f1 (t)

t

)γ1
· ... ·

(
fn (t)

t

)γn
dt (2.11.3)

• Pfaltzgraff type general integral operator Breaz-Owa-Breaz

J6 (z) =

∫ z

0

(
f ′1 (t)

)γ1 ... (f ′n (t)
)γn dt (2.11.4)

Applying the analythic characterization for the above mentioned classes, we get the following

convexity properties (convexity of a given order):

Theorem 2.11.1.([33]) If fi ∈ βi − UCV(αi), −1 ≤ αi ≤ 1, βi > 0, γi > 0, i ∈ {1, ..., n}
and

n∑
i=1

γi ≤ 1
2 , then J6 ∈ K(ρ),where ρ = 1 +

n∑
i=1

γi(αi − 1).

Theorem 2.11.2.([33]) If fi ∈ βi − Sp(αi), −1 ≤ αi ≤ 1, βi > 0, γi > 0, i ∈ {1, ..., n} and
n∑
i=1

γi ≤ 1
2 , then J1 ∈ K(ρ), where ρ = 1 +

n∑
i=1

γi(αi − 1).

2.12 Univalence of a general integral operator based

on regular and Caratheodory functions

In the paper [38], together with V. Pescar, we obtained three univalence criteria for a general

integral operator built on two sets of functions, respectively regular and Caratheodory functions

(Definition 1.1.14), defined as follows:

• Breaz-Pescar general integral operator
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2.12. Univalence of a general integral operator based on regular and Caratheodory
functions

J8(z) =

δ ∫ z

0
uδ−1

n∏
j=1

(
fj(u)

u

)αj
(gj(u))βj du

 1
δ

, (2.12.1)

where δ, αj , βj are complex numbers, δ 6= 0, fj ∈ A, gj ∈ P, j = 1, n.

The operator is studied on the following classes of functions:

• The class of functions AM

AM =

{
f ∈ A :

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤M, M ≥ 1

}
, (2.12.2)

• The class of functions PL

PL =

{
f ∈ P :

∣∣∣∣zf ′(z)f(z)

∣∣∣∣ ≤ L, L > 0

}
. (2.12.3)

For various combinations of functions that compose the operator, we gave the following three

univalence criteria:

Theorem 2.12.1. ([38]) Let δ, αj , βj be complex numbers, Reδ ≥ 1, Mj , Lj pozitive real

numbers, Mj ≥ 1, j = 1, n and the functions fj ∈ AMj , gj ∈ PLj , j = 1, n.

If
n∑
j=1

[|αj |Mj + |βj |Lj ] ≤
3
√

3

2
, (2.12.4)

then the integral operator J8, is in the class S.

Proof. We apply Pascu criterion, Lemma 1.2.1 and Schwarz Lemma 1.1.9.

Theorem 2.12.2. ([38]) Let γ, δ, αj , βj be complex numbers, j = 1, n, Re δ ≥ Re γ > 0

and the functions fj ∈ Aµ, gj ∈ Pµ, µ ≥ 1, with

µ =
(2Reγ + 1)

1+ 1
2Reγ

2
. (2.12.5)

If
n∑
j=1

[|αj |+ |βj |] ≤ 1, (2.12.6)

then the integral operator J8 is in the class S.

Theorem 2.12.3. ([38]) Let γ, δ, αj , βj be complex numbers, j = 1, n, Re δ ≥ Re γ > 0

and fj ∈ S, gj ∈ P. If
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2.13. Kudriasov type univalence conditions for two general integral operators

2

n∑
j=1

|αj |+
n∑
j=1

|βj | ≤ min

{
Re γ

2
,
1

2

}
(2.12.7)

then the integral operator J8 is in the class S.

2.13 Kudriasov type univalence conditions for two

general integral operators

Together with V. Pescar, in the paper [85], we obtained sufficient univalence conditions of

Kudriasov type for two of our general integral operators, one of Kim-Merkes type and the other,

of Pfaltzgraff type. From these conditions some corollaries for various particular operators can

be derived, but we present here only the main results.

The following general integral operators are studied:

• Kim-Merkes type Breaz-Breaz operator

J2(z) =

β z∫
0

uβ−1

(
f1 (u)

u

)γ1
· ... ·

(
fn (u)

u

)γn
du

 1
β

(2.13.1)

• Pfaltzgraff type Breaz-Breaz operator

J4(z) =

β
z∫

0

uβ−1 ·
[
f ′1(u)

]γ1 · ... · [f ′n(u)
]γn du


1/β

(2.13.2)

The next theorems state for univalence criteria of Kudriasov type, for the above mentioned

operators:

Theorem 2.13.1 ([85]) Let α, γj, be complex numbers, Reα > 0, the functions fj ∈ A,

j = 1, n, n ∈ N− {0} and K pozitive real number, K ∼= 3.05. If∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤ K, z ∈ U, j = 1, n (2.13.3)

and

|γ1|+ |γ2|+ ...+ |γn| ≤ min
{

Reα

4
,
1

4

}
(2.13.4)

then fj ∈ S, j = 1, n and for any complex number, β, Reβ ≥ Reα, the integral operator J2

belongs to the class S.
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2.13. Kudriasov type univalence conditions for two general integral operators

Proof. We consider the regular function

hn(z) =

z∫
0

(
f1(u)

u

)γ1
...

(
fn(u)

u

)γn
du. (2.13.5)

Aiming to apply univalence criterion given by N.N. Pascu, Lemma 1.2.1, after some calculus,

we obtain
zh′′n(z)

h′n(z)
= γ1

(
zf ′1(z)

f1(z)
− 1

)
+ ...+ γn

(
zf ′n(z)

fn(z)
− 1

)
, z ∈ U (2.13.6)

If we take the modulus, we get∣∣∣∣zh′′n(z)

h′n(z)

∣∣∣∣ ≤ |γ1|
(∣∣∣∣zf ′1(z)

f1(z)

∣∣∣∣+ 1

)
+ ...+ |γn|

(∣∣∣∣zf ′n(z)

fn(z)

∣∣∣∣+ 1

)
. (2.13.7)

From Kudriasov type hypothesis condition, taking into account Kudriasov Lemma 1.1.18,

we have that fj ∈ S, j = 1, n, hence,∣∣∣∣zf ′j(z)fj(z)

∣∣∣∣ ≤ 1 + |z|
1− |z|

, z ∈ U, j = 1, n. (2.13.8)

From (2.13.7) and (2.13.8), we get

1− |z|2Reα

Reα

∣∣∣∣zh′′n(z)

h′n(z)

∣∣∣∣ ≤ 1− |z|2Reα

Reα

2

1− |z|
(|γ1|+ ...+ |γn|) . (2.13.9)

We consider two cases:

1) 0 < Reα < 1. The function s : (0, 1) → Re, s(x) = 1− a2x, x = Reα, a = |z|, (0 < a < 1) is

an increasing function, hence,

1− |z|2Reα < 1− |z|2, z ∈ U. (2.13.10)

Using this inequality in the estimation (2.13.9), we have

1− |z|2Reα

Reα

∣∣∣∣zh′′n(z)

h′n(z)

∣∣∣∣ < 4

Reα
(|γ1|+ ...+ |γn|) , z ∈ U. (2.13.11)

Now, we use the hypothesis conditions on the parameters and further, we get,

1− |z|2Reα

Reα

∣∣∣∣zh′′n(z)

h′n(z)

∣∣∣∣ < 1, z ∈ U. (2.13.12)

2) Reα ≥ 1. Since the function q is a decreasing function

q : [1,∞)→ R, q(x) =
1− a2x

x
, x = Reα, a = |z| , (0 < a < 1)
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2.13. Kudriasov type univalence conditions for two general integral operators

we get
1− |z|2Reα

Reα
≤ 1− |z|2 , z ∈ U. (2.13.13)

Further, using the last formula in the estimation (2.13.9), we obtain

1− |z|2Reα

Reα

∣∣∣∣zh′′n(z)

h′n(z)

∣∣∣∣ ≤ 4 (|γ1|+ ...+ |γn|) . (2.13.14)

Now we use the hypothesis conditions on the coefficients, hence we obtain

1− |z|2Reα

Reα

∣∣∣∣zh′′n(z)

h′n(z)

∣∣∣∣ ≤ 1, z ∈ U. (2.13.15)

In both cases, we can apply the univalence criterion given by N.N. Pascu, Lemma 1.2.1 and

find that J2 ∈ S.

Theorem 2.13.2 ([85]) Let α, γj, be complex numbers, j = 1, n, Reα > 0, the functions

fj ∈ A, fj(z) = z + a2jz
2 + ..., j = 1, n, n ∈ N− {0} and K pozitive real number, K ∼= 3.05. If∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤ K, z ∈ U, j = 1, n (2.13.16)

and

|γ1|+ |γ2|+ ...+ |γn| ≤
(2Reα+ 1)

2Reα+1
2Reα

2K
(2.13.17)

then the functions fj ∈ S, j = 1, n and, for any complex number β, Reβ ≥ Reα, the integral

operator J4 is in the class S.

Proof. Using both Kudriasov type hypothesis condition and Kudriasov Lemma 1.1.18, it

comes that fj ∈ S, j = 1, n.

We consider the regular function

pn(z) =

z∫
0

(
f ′1(u)

)γ1 ... (f ′n(u)
)γn du (2.13.18)

After some calculation, we have

zp′′n(z)

p′n(z)
= γ1

zf ′′1 (z)

f ′1(z)
+ ...+ γn

zf ′′n(z)

f ′n(z)
, z ∈ U. (2.13.19)

Aiming to apply N.N. Pascu criterion, Lemma 1.2.1, we get the evaluation

1− |z|2Reα

Reα

∣∣∣∣zp′′n(z)

p′n(z)

∣∣∣∣ ≤ 1− |z|2Reα

Reα
|z|
[
|γ1|

∣∣∣∣f ′′1 (z)

f ′1(z)

∣∣∣∣+ ...+ |γn|
∣∣∣∣f ′′n(z)

f ′n(z)

∣∣∣∣] . (2.13.20)
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2.14. Coefficient estimates and modified Hadamard product for classes of analytic
functions, p-valent, with negative coefficients

If in this inequality, we apply the hypothesis Kudriasov type condition, we obtain

1− |z|2Reα

Reα

∣∣∣∣zp′′n(z)

p′n(z)

∣∣∣∣ ≤
[

1− |z|2Reα

Reα
|z|

]
(K |γ1|+ ...+K |γn|) , z ∈ U. (2.13.21)

Now, we consider the function G : [0, 1] → R, G(x) = 1−x2a
a x, x = |z|, a = Reα. We can

prove that

max
x∈[0,1]

G(x) =
2

(2a+ 1)
2a+1
2a

. (2.13.22)

If we use (2.13.22) and the hypothesis conditions on the parameter, in the last formula, we

get

1− |z|2Reα

Reα

∣∣∣∣zp′′n(z)

p′n(z)

∣∣∣∣ ≤ 1, z ∈ U. (2.13.23)

Applying N.N. Pascu criterion, Lemma 1.2.1, it comes that J4 ∈ S.

2.14 Coefficient estimates and modified Hadamard

product for classes of analytic functions, p-valent,

with negative coefficients

In the paper [43], together with R. El-Ashwah and M. Aouf, we gave coefficients estimates

and studied the modified Hadamard product for some classes of starlike, respectively convex

functions of order α, p-valent, with negative coefficients, defined with a differential operator.

After that, in [36], we extended these results for some other classes of analytic functions, p-

valent, with negative coefficients. Here we present only the more general results.

We denote by T0(p), the class of analytic functions, p-valent in the open unit disk, U , having

the form:

f(z) = ap · zp −
∞∑
n=1

ap+nz
p+n, (ap+n ≥ 0; p ∈ N = {1, 2, ...} , ap > 0) (2.14.1)

For ap = 1
p! , we have: f(0) = f ′(0) = ... = f (p−1)(0) = 0 and f (p)(0) = 1. We denote by T (p),

the class T0(p) with ap = 1.

We introduced the following classes:

• The class β − UST0(p, q, α) of the p-valent functions, with negative coefficients, β - uni-

formly starlike of order α, with respect to the differentiation of order q, Breaz-El.Ashwah
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2.14. Coefficient estimates and modified Hadamard product for classes of analytic
functions, p-valent, with negative coefficients

β − UST0(p, q, α) =

=

{
f ∈ T0(p) : Re

{
zf (1+q)(z)

f (q)(z)

}
≥ β

∣∣∣∣∣
{
zf (1+q)(z)

f (q)(z)

}
− 1

∣∣∣∣∣+ α

}
, (2.14.2)

(z ∈ U ; 0 ≤ α < p− q; p ∈ N ; p > q; q ∈ N0 = N ∪ {0}, β ≥ 0
)

• The class β−UCV0(p, q, α) of the p-valent functions, with negative coefficients, β - uniformly

convex of order α, with respect to the differentiation of order q, Breaz-El.Ashwah

β − UCV0(p, q, α) =

=

{
f ∈ T0(p) : Re

{
1 +

zf (2+q)(z)

f (1+q)(z)

}
≥ β

∣∣∣∣∣
{
zf (2+q)(z)

f (1+q)(z)

}∣∣∣∣∣+ α

}
, (2.14.3)

(z ∈ U ; 0 ≤ α < p− q; p ∈ N ; p > q; q ∈ N0 = N ∪ {0}, β ≥ 0
)

Particular classes of functions with negative coefficients can be derived if we take different

values for the parameters involved in the definitions:

i) β = 0, ap = 1: β − UST0(p, q, α) = S(p, q, α) and β − UCV0(p, q, α) = C(p, q, α), Chen,

Irmak and Srivastava; for β = 0, ap = 1 si q = 0, the classes were studied by Owa, Salagean,

Hossen, Aouf and Sekine.

ii) p = 1, q = 0: the classes of functions β-uniformly starlike, respectively convex of order α,

Bharati, Frasin; for p = 1, q = 0, α = 0: classes of functions β - uniformly convex, respectively

starlike, Kanas and Wisniowska.

Next two theorems give information about the coefficients of the functions considered:

Theorem 2.14.1. ([36]) Every function f ∈ β − UST0(p, q, α) satisfies the inequality

∞∑
n=1

[(n+ p− q − α) + β(n+ p− q − 1)] · δ(n+ p, q) · an+p

≤ [(p− q − α) + β(p− q − 1)] · δ(p, q) · ap, (2.14.4)

where

δ(p, q) =
p!

(p− q)!
=

{
p(p− 1)...(p− q + 1) (q 6= 0)

1 (q = 0) .
(2.14.5)

Proof. It can be proved that f ∈ S(p, q, γ), γ = α+β
1+β and then, the characterization of the

coefficients from this class, given by Chen, Irmak and Srivastava, is used.
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2.14. Coefficient estimates and modified Hadamard product for classes of analytic
functions, p-valent, with negative coefficients

Theorem 2.14.2. ([36]) Every functions f ∈ β − UCV0(p, q, α) satisfies the inequality

∞∑
n=1

(
n+ p− q
p− q

)
[(n+ p− q − α) + β(n+ p− q − 1)] · δ(n+ p, q) · an+p

≤ [(p− q − α) + β(p− q − 1)] · δ(p, q) · ap. (2.14.6)

Proof. We show that f ∈ C(p, q, γ), γ = α+β
1+β .

Now, let’s consider the following class:

• The class T0(k, p, q, α), k ≥ 0

T0(k, p, q, α) = {f ∈ T0(p) :

∞∑
n=1

(
n+ p− q
p− q

)k
[(n+ p− q − α) + β(n+ p− q − 1)] δ(n+ p, q)ap+n

≤ [(p− q − α) + β(p− q − 1)] δ(p, q)ap} . (2.14.7)

We can see that the class T0(k, p, q, α), k ≥ 0 is not empty, containing at least, the function:

f(z) = apz
p−

∞∑
n=1

[(p− q − α) + β(p− q − 1)] δ(p, q)ap · λp+nzp+n(
n+p−q
p−q

)k
[(n+ p− q − α) + β(n+ p− q − 1)] δ(n+ p, q)

, (2.14.8)

with ap > 0, λp+n > 0 si
∞∑
n=1

λp+n ≤ 1.

The following inclusions hold:

β − T0(k, p, q, α) ⊂ β − T0(c, p, q, α) for k > c ≥ 0.

β − UST0(p, q, α) ⊂ β − T0(0, p, q, α)

β − UCV0(p, q, α) ⊂ β − T0(1, p, q, α). (2.14.9)

Further we will consider the modified Hadamard product, on the class T0(p), defined as:
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2.14. Coefficient estimates and modified Hadamard product for classes of analytic
functions, p-valent, with negative coefficients

(fi ∗ gj) (z) = ap,ibp,jz
p −

∞∑
n=1

ap+n,ibp+n,jz
p+n (i, j = 1, 2, 3, ...) . (2.14.10)

where

fi(z) = ap,iz
p −

∞∑
n=1

ap+n,iz
p+n (ap,i > 0; ap+n,i ≥ 0),

gj(z) = bp,jz
p −

∞∑
n=1

bp+n,jz
p+n (bp,j > 0; bp+n,j ≥ 0). (2.14.11)

Next theorem describes the behaviour of the modified Hadamard product on our classes:

Theorem 2.14.3 ([36]) Let be the functions fi(z) from the classes β − UST0(p, q, αi)(i =

1, 2, 3, ...,m) and the functions gj(z) from the classes β−UCV0(p, q, γj)(j = 1, 2, 3, ..., d). Then

the modified Hadamard product f1 ∗ f2 ∗ f3 ∗ ... ∗ fm ∗ g1 ∗ g2 ∗ g3 ∗ ... ∗ gd(z) belongs to the class

β − T0(m+ 2d− 1, p, q, ρ), with

ρ = max{α1, α2, α3, ..., αm, γ1, γ2, γ3, ..., γd} . (2.14.12)

Proof. We prove the theorem only for the case m = d = 1 and αi = γj = α, namely, we

show that if f ∈ β − UST0(p, q, α), g ∈ β − UCV0(p, q, α) then f ∗ g ∈ β − T0(2, p, q, α).

From f ∈ β − UST0(p, q, α), using the Theorem of coefficient estimates, 2.14.1, we obtain

an+p ≤
[

[(p− q − α) + β(p− q − 1)] · δ(p, q)
[(n+ p− q − α) + β(n+ p− q − 1)] · δ(n+ p, q)

]
· ap. (2.14.13)

We denote by H(α), the function

H(α) =
[(p− q − α) + β(p− q − 1)]

[(n+ p− q − α) + β(n+ p− q − 1)]
(2.14.14)

and by G(β), the function

G(β) =
[(p− q) + β(p− q − 1)]

[(n+ p− q) + β(n+ p− q − 1)]
. (2.14.15)

Since the functions H(α), G(β) are decreasing functions

δ(p, q)

δ(n+ p, q)
≤ 1, (2.14.16)

further, we get,

an+p ≤
p− q

n+ p− q
· ap. (2.14.17)
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2.15. Mocanu and Şerb type univalence criterion for some general integral operators

On the other hand, since g ∈ β−UCV0(p, q, α), we have, according to the Theorem of coefficient

estimates, 2.14.2,

∞∑
n=1

(
n+ p− q
p− q

)
[(n+ p− q − α) + β(n+ p− q − 1)] δ(n+ p, q)bp+n

≤ [(p− q − α) + β(p− q − 1)] δ(p, q)bp. (2.14.18)

Combining the last two inequalities, we obtain that the Hadamard product is in the class β −
T0(2, p, q, α), because

∞∑
n=1

(
n+ p− q
p− q

)2

[(n+ p− q − α) + β(n+ p− q − 1)] ·

·δ(n+ p, q)ap+nbp+n

≤ [(p− q − α) + β(p− q − 1)] δ(p, q)apbp. (2.14.19)

These three theorems extend known results. For example, for p = 1 and q = 0 we get the

results given by B. Frasin.

2.15 Mocanu and Şerb type univalence criterion for

some general integral operators

Here, we obtain new conditions of univalence for two general integral operators, Tn and Bn,

by applying the improvement of Becker univalence criterion, obtained by Pascu in the paper

[76]. Also, a lemma given by Mocanu and Şerb in the paper [66], will be used to get some parts

of the results. These univalence conditions were published as a joint work with V. Pescar in the

paper [86].

In the last decade, some general integral operators, defined as a family of integral oper-

ators, using more than one analytic function in their definition, have been studied with respect

to their univalence (see for example, the works [9], [10] and [81], and many other recent paper

as [38], [57], [97]).

In this section, the univalence study is focused on the following general integral operators:

Tn(z) =

β
z∫

0

uβ−1
(
f ′1(u)

)γ1 ... (f ′n(u)
)γn du


1
β

, (2.15.1)
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Bn(z) =

β
z∫

0

uβ−1

(
f1(u)

u

)µ1
...

(
fn(u)

u

)µn (
g′1(u)

)η1 ... (g′n(u)
)ηn du


1
β

, (2.15.2)

β, γj , µj , ηj complex numbers, β 6= 0, fj , gj ∈ A, j = 1, n.

Remark 2.15.1. ([86])

(i) The integral operator Tn, introduced by Breaz and Breaz in the paper [10] is a general

integral operator of Pfaltzgraff type which extends also the operator introduced by Pescar

and Owa([87]), derived from (2.15.1) , for n = 1. This operator has been studied with

respect to its univalence, in many papers (see for example [81] and [85]).

(ii) Let’s consider also the integral operator

Hn(z) =

β
z∫

0

uβ−1

(
f1(u)

u

)γ1
...

(
fn(u)

u

)γn
du


1
β

. (2.15.3)

The integral operator Hn, introduced by Breaz and Breaz in the paper [9] is a general

integral operator of Kim-Merkes type, which extends also the operator introduced in [78],

by Pascu and Pescar, derived from (2.15.3) , for n = 1.

Thus, the integral operator Bn, introduced here by the formula (2.15.2) , can be considered

as an extension of both Hn (for ηj = 0, j = 1, n) and Tn (for µj = 0, j = 1, n).

Moreover, if in the definition of Bn, we take g = f , we obtain the general integral operator

given by Frasin ([45]), from which, if we take n = 1, we can derive further the operator

given by Ovesea ([70]). Also, some different versions of this operator, Bn, were studied in

other papers as for example [38] and [57].

In what follows, we present conditions of univalence for these two general integral operators,

Tn and Bn, and related results.

Theorem 2.15.2. ([86])Let α, γj be complex numbers, j = 1, n, Reα > 0 and the functions

fj ∈ A, fj(z) = z + a2jz
2 + ..., j = 1, n, n ∈ N− {0}, M a positive real number.

If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M, z ∈ U, j = 1, n (2.15.4)
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and

|γ1|+ |γ2|+ ...+ |γn| ≤
(2Reα+ 1)

2Reα+1
2Reα

2M
(2.15.5)

then for every complex number β, Reβ ≥ Reα, the integral operator Tn belongs to the class S.

Proof. We consider the function

tn(z) =

z∫
0

(
f ′1(u)

)γ1 ... (f ′n(u)
)γn du (2.15.6)

which is regular in U and tn(0) = t′n(0)− 1 = 0.

After some calculus we have the following evaluation for the expression involved in the

hypothesis of N.N.Pascu univalence criterion, Lemma 1.2.1, [76],

1− |z|2Reα

Reα

∣∣∣∣zt′′n(z)

t′n(z)

∣∣∣∣ ≤ 1− |z|2Reα

Reα
|z|
[
|γ1|

∣∣∣∣f ′′1 (z)

f ′1(z)

∣∣∣∣+ ...+ |γn|
∣∣∣∣f ′′n(z)

f ′n(z)

∣∣∣∣] , (2.15.7)

for all z ∈ U .

On the other hand it can be proved that

max
|z|∈[0,1]

1− |z|2Reα

Reα
|z| = 2

(2Reα+ 1)
2Reα+1
2Reα

. (2.15.8)

Hence, if we apply hypothesis conditions (2.15.4), (2.15.5) and also (2.15.8) in the formula

(2.15.7) , the condition of N.N.Pascu univalence criterion, Lemma 1.2.1 ([76]) is satisfied, con-

sequently Tn ∈ S.

Remark 2.15.3. ([86])If in Theorem 2.15.2, we take different values for the positive

constant M , we can obtain also some information about the functions fj , j = 1, n, not only

about the integral operator. Thus:

(i) For M = K ∼= 3.05 (Kudriasov constant), we have that the functions fj , j = 1, n are uni-

valent (see Kudriasov Lemma 1.1.18). Thus, Theorem 2.15.2 extends the result obtained

by us, using Kudriasov constant in the paper [85].

(ii) For M ∼= 2.83 (Mocanu constant), fj , j = 1, n are starlike and consequently univalent (see

Mocanu Lemma 1.1.20).

(iii) For M = M0
∼= 1.5936 (Mocanu and Şerb constant), the functions fj , j = 1, n belongs to

some special class of starlike functions, consequently they are univalent (see Mocanu and

Şerb Lemma 1.1.15).

Corollary 2.15.4. ([86])Let α, γj be complex numbers, j = 1, n, 0 ≤ Reα ≤ 1 and the

48
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functions fj ∈ A, fj(z) = z + a2jz
2 + ..., j = 1, n, n ∈ N− {0}, M the positive real number. If∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M, z ∈ U, j = 1, n (2.15.9)

and

|γ1|+ |γ2|+ ...+ |γn| ≤
(2Reα+ 1)

2Reα+1
2Reα

2M
(2.15.10)

then the integral operator Kn defined by

Kn(z) =

z∫
0

(
f ′1(u)

)γ1 ... (f ′n(u)
)γn du (2.15.11)

is in the class S.

Proof. We take β = 1.

Remark 2.15.5. ([86])The general integral operator of Pfaltzgraff type Kn was introduced

by Breaz et al. in the paper [29].

Theorem 2.15.6. ([86])Let α, µj, ηj, be complex numbers, Reα > 0, fj , gj ∈ A, j = 1, n,

n ∈ N− {0}, M a positive real number and M0 = 1.5936... the positive solution of equation

(2−M)eM = 2. (2.15.12)

If ∣∣∣∣∣f ′′j (z)

f ′j(z)

∣∣∣∣∣ ≤M0, z ∈ U, j = 1, n, (2.15.13)

∣∣∣∣∣g′′j (z)

g′j(z)

∣∣∣∣∣ ≤M, z ∈ U, j = 1, n, (2.15.14)

and
n∑
j=1

|µj |+M ·
n∑
j=1

|ηj | ≤ Reα, (2.15.15)

then fj ∈ S, j = 1, n and for every complex number β, Reβ ≥ Reα, we have Bn ∈ S.

Proof. We apply N.N.Pascu univalence criterion, Lemma 1.2.1 for the regular function

bn(z) =

z∫
0

n∏
j=1

(
fj(u)

u

)µj n∏
j=1

(
g′j(u)

)ηj du. (2.15.16)
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After some derivative calculus, we get

1− |z|2Reα

Reα

∣∣∣∣zb′′n(z)

b′n(z)

∣∣∣∣ ≤ 1− |z|2Reα

Reα

n∑
j=1

[
|µj |

∣∣∣∣zf ′j(z)fj(z)
− 1

∣∣∣∣+ |ηj | |z|

∣∣∣∣∣g′′j (z)

g′j(z)

∣∣∣∣∣
]
, (2.15.17)

for all z ∈ U .

Applying all hypothesis conditions and further, Mocanu and Şerb Lemma 1.1.15, for fj ,

j = 1, n, we have
1− |z|2Reα

Reα

∣∣∣∣zb′′n(z)

b′n(z)

∣∣∣∣ ≤ 1, (2.15.18)

which according to N.N.Pascu univalence criterion, Lemma 1.2.1 implies that Bn ∈ S.

Remark 2.15.7. ([86])

(i) For ηj = 0, j = 1, n, we get the same univalence criterion for the integral operator Hn,

recalled in the Remark 2.15.1 (ii), as it was obtained in [80].

(ii) For µj = 0, j = 1, n, we get a new univalence criterion for the integral operator Tn, based

on the condition
∑n

j=1 |ηj | ≤
Reα
M and the Remark 2.15.1 could be also reiterated.

2.16 A subclass of multivalent functions involving

higher-order derivatives

In this section we present a new class of analytic and p-valent functions involving higher-order

derivatives. For this p-valent function class, we derive several interesting properties including

coefficient inequalities, distortion theorems, extreme points, and the radii of close-to-convexity,

starlikeness and convexity. Several applications involving an integral operator are also con-

sidered. Finally, we obtain some results for the modified Hadamard product of the functions

belonging to the p-valent function class which is introduced here. The results are published as

a joint work with H.M. Srivastava and R. El-Ashwah in the paper [96].

Let A(p) denote the class of functions of the form:

f(z) = zp +

∞∑
k=p+1

akz
k (p ∈ N = {1, 2, 3, · · · }), (2.16.1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.

A function f(z) ∈ A(p) is said to be in the class UST (p, α, β) of p-valent β-uniformly starlike

functions of order α in U if and only if
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2.16. A subclass of multivalent functions involving higher-order derivatives

Re

(
zf ′(z)

f(z)
− α

)
= β

∣∣∣∣zf ′(z)f(z)
− p
∣∣∣∣ (z ∈ U; −p 5 α < p; β = 0). (2.16.2)

On the other hand, a function f(z) ∈ A(p) is said to be in the class UCV(p, α, β) of p-valent

β-uniformly convex functions of order α in U if and only if

Re

(
1 +

zf ′′(z)

f ′(z)
− α

)
= β

∣∣∣∣1 +
zf ′′(z)

f ′(z)
− p
∣∣∣∣ (z ∈ U; −p 5 α < p; β = 0). (2.16.3)

The above-defined function classes UST (p, α, β) and UCV(p, α, β) were introduced re-

cently by Khairnar and More [52]. Various analogous classes of analytic and univalent or mul-

tivalent functions were studied in many papers (see, for example, [2], [36] and [51]).

We notice from the inequalities (2.16.2) and (2.16.3) that

f(z) ∈ UCV(p, α, β) ⇐⇒ zf ′(z)

p
∈ UST (p, α, β). (2.16.4)

Now, for each f(z) ∈ A(p), it is easily seen upon differentiating both sides of (2.16.1) q times

with respect to z that

f (q)(z) = δ(p, q)zp−q +
∞∑

k=p+1

δ(k, q)akz
k−q (q ∈ N0 := N ∪ {0}; p > q), (2.16.5)

where, and in what follows, δ(p, q) denotes the q-permutations of p objects (p = q = 0), that is,

δ(p, q) :=
p!

(p− q)!
=


p(p− 1) · · · (p− q + 1) (q 6= 0)

1 (q = 0),

which may also be identified with the notation {p}q for the descending factorial.

Let

−δ(p− q,m) 5 α < δ(p− q,m), β = 0 and p > q +m (p ∈ N; q,m ∈ N0).

We then denote by USm(p, q;α, β) the subclass of the p-valent function class A(p) consisting

of functions f(z) of the form (2.16.1), which also satisfy the following analytic criterion:

Re

(
zmf (q+m)(z)

f (q)(z)
− α

)
= β

∣∣∣∣∣zmf (q+m)(z)

f (q)(z)
− δ(p− q,m)

∣∣∣∣∣ (z ∈ U). (2.16.6)

We also denote by T (p) the subclass of A(p) consisting of functions of the following form:
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2.16. A subclass of multivalent functions involving higher-order derivatives

f(z) = zp −
∞∑

k=p+1

akz
k (ak = 0; p ∈ N). (2.16.7)

Further, we define the class

UST m(p, q;α, β) = USm(p, q;α, β) ∩ T (p). (2.16.8)

For suitable choices of p, q, m and β, we obtain the following known subclasses:

(i) It is easily verified that
(
see Liu and Liu [56] (with γ = 1 and n = 1)

)
UST m (p, q, α, 0) = A∗1,p (m, q, α, 1)(

0 5 α < δ(p− q,m); p ∈ N; m, q ∈ N0; p > q +m
)
;

(ii) We observe that (see Khairnar and More [52])

UST 1(p, 0;α, β) = UST (p, α, β) (−p 5 α < p; β = 0; p ∈ N)

and

UST 1(p, 1;α, β) = UCV(p, γ, β) (−p 5 γ = α+ 1 < p; β = 0; p ∈ N);

(iii) It is easy to see that
(
see Aouf [4] (with β = 1 and n = 1)

)
UST 1 (p, q, α, 0) = S1 (p, q, α, 1) (0 5 α < p− q; p ∈ N; q ∈ N0; p > q + 1)

and

UST 1 (p, q, α, 0) = C1 (p, t, γ, 1) (0 5 α < p− q; p, q ∈ N; p > q + 1; t = q − 1; γ = α+ 1);

(iv) We notice that
(
see Chen et al. [40] (with n = 1)

)
UST 1 (p, q, α, 0) = S1 (p, q, α) (0 5 α < p− q; p ∈ N; q ∈ N0; p > q + 1)

and

UST 1 (p, q, α, 0) = C1 (p, t, γ) (0 5 α < p− q; p, q ∈ N; p > q + 1; t = q − 1; γ = α+ 1).

In what follows we obtain several properties of the class UST m(p, q;α, β). Various other

papers were dedicated to the study of such aspects as we have considered in this section. For

example, different classes of functions with negative coefficients, defined by using some deriva-

tive operators, were studied with respect to their Hadamard product in the paper [1] in the case
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of multivalence or coefficient estimates, distorsion bounds and Hadamard product, and in the

paper [50] in the case of univalence. Another class of analytic and multivalent functions was

studied in the paper [67], where the class was proved as being closed under the convolution and

some integral operators (see also the recent works [41], [94] and [95]).

The following results state for coefficient estimates:

Unless otherwise mentioned, we assume throughout this paper that

−δ(p− q,m) 5 α < δ(p− q,m), β = 0, q,m ∈ N0, p ∈ N and p > q +m.

Our first result (Theorem 2.16.1 below) provides the coefficient inequalities for functions in the

class USm(p, q;α, β).

Theorem 2.16.1. ([96]) A function f (z) of the form (2.16.1) is in the class USm(p, q;α, β)

if

∞∑
k=p+1

[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)ak 5 [δ(p− q,m)− α] δ(p, q).

(2.16.9)

Proof. It is easy to show that

β

∣∣∣∣∣zmf (q+m)(z)

f (q)(z)
− δ(p− q,m)

∣∣∣∣∣−<
(
zmf (q+m)(z)

f (q)(z)
− δ(p− q,m)

)
5 [δ(p− q,m)− α],

which implies the result (2.16.9) asserted by Theorem 2.16.1.

Theorem 2.16.2 ([96]) A necessary and sufficient condition for f(z) of the form (2.16.7)

to be in the class UST m(p, q;α, β) is that

∞∑
k=p+1

[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)ak 5 [δ(p− q,m)− α] δ(p, q).

(2.16.10)

Proof. In view of Theorem 2.16.1, we need only to prove the necessity.

If f(z) ∈ UST m(p, q;α, β) and z is a real number, then

zmf (q+m)(z)

f (q)(z)
− α = β

∣∣∣∣∣zmf (q+m)(z)

f (q)(z)
− δ(p− q,m)

∣∣∣∣∣ .
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By making some calculations and letting z → 1− along the real axis, we have the desired

inequality (2.16.10)

Remark 2.16.3. ([96]) (i) Taking β = 0, Theorem 2.16.2 extends the result for the

coefficient estimates related to the class A∗1,p (m, q, α, 1), which is due to Liu and Liu [56] (with

γ = 1 and n = 1);

(ii) Taking q = 0 and p = m = 1, Theorem 2.16.2 extends the result for the coefficient estimates

related to the class ST 0 (α, β), which is due to Frasin [44] (with a1 = 1);

(iii) Taking p = m = 1, q = t+ 1, t = 0 and α = γ−1, Theorem 2.16.2 extends the result for the

coefficient estimates related to the class UCT 0 (γ, β), which is due to Frasin [44] (with a1 = 1);

(iv) Taking β = 0 and m = 1, Theorem 2.16.2 extends the result or the coefficient estimates

related to the class S1 (p, q, α, 1), which is due to Aouf [4] (with β = 1 and n = 1);

(v) Taking β = 0, m = 1, q = t + 1 and α = γ − 1, Theorem 2.16.2 extends the result for the

coefficient estimates related to the class C1 (p, t, γ, 1), which is due to Aouf [4] (with β = 1 and

n = 1);

(vi) Taking β = 0 and m = 1, Theorem 2.16.2 extends the result for the coefficient estimates

related to the class S (p, q, α), which is due to Chen et al. [40] ( with n = 1);

(vii) Taking β = 0, m = 1, q = t+ 1 and α = γ − 1, Theorem 2.16.2 extends the result for the

coefficient estimates related to the class C (p, t, γ), which is due to Chen et al. [40] (with n = 1).

Corollary 2.16.4. ([96]) Let the function f(z) defined by (2.16.7) be in the class

UST m(p, q;α, β). Then

ak 5
[δ(p− q,m)− α] δ(p, q)[

(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]
]
δ(k, q)

(k = p+ 1). (2.16.11)

The result is sharp for the functions fk(z) given by

fk(z) = zp − [δ(p− q,m)− α] δ(p, q)[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

zk (k = p+ 1).

(2.16.12)

The following two results give distorsion theorems for the functions from our class:

Theorem 2.16.5. ([96]) Let the function f(z) defined by (2.16.7) be in the class

UST m(p, q;α, β). Then, for |z| = r < 1,

|f(z)| = rp − [δ(p− q,m)− α]δ(p, q)[
(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(p+ 1, q)

rp+1

(2.16.13)

and
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|f(z)| 5 rp +
[δ(p− q,m)− α] δ(p, q)[

(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− α]
]
δ(p+ 1, q)

rp+1,

(2.16.14)

The equalities in (2.16.13) and (2.16.14) are attained for the function f(z) given by

f(z) = zp − [δ(p− q,m)− α] δ(p, q)[
(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(p+ 1, q)

zp+1

(2.16.15)

at z = r and z = rei(2s+1)π (s ∈ Z).

Proof. For k = p+ 1, we have

[
(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(p+ 1, q)

5
[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q).

Now, using the hypothesis of Theorem 2.16.2, we get

∞∑
k=p+1

ak 5
[δ(p− q,m)− α] δ(p, q)[

(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− α]
]
δ(p+ 1, q)

. (2.16.16)

Lastly, by using the form (2.16.7) of the function, the proof of Theorem 2.16.5 is completed.

Theorem 2.16.6. ([96]) Let the function f(z) defined by (2.16.7) be in the class

UST m(p, q;α, β). Then, for |z| = r < 1,

∣∣f ′(z)∣∣ = prp−1 − (p+ 1) [δ(p− q,m)− α] δ(p, q)[
(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(p+ 1, q)

rp

(2.16.17)

and

∣∣f ′(z)∣∣ 5 prp−1 +
(p+ 1) [δ(p− q,m)− α] δ(p, q)[

(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− α]
]
δ(p+ 1, q)

rp.

(2.16.18)

The result is sharp for the function f(z) given by (2.16.15).

Proof. Using similar techniques as in our demonstration of Theorem 2.16.5, we get

∞∑
k=p+1

kak 5
(p+ 1) [δ(p− q,m)− α] δ(p, q)[

(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− α]
]
δ(p+ 1, q)

,

which leads us to the completion of the proof of Theorem 2.16.6.
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2.16. A subclass of multivalent functions involving higher-order derivatives

Remark 2.16.7. ([96]) Taking β = 0, in the above theorems, we obtain results similar to

those obtained by Liu and Liu [56] (with γ = 1 and n = 1).

By applying Theorem 2.16.2, we can prove that our class is closed under convex linear

combinations as a corollary of the next result.

Theorem 2.16.8. ([96]) Let µν = 0 for ν = 1, 2, · · · , l and
l∑

ν=1
µν 5 1. If the functions

fν(z) defined by

fν(z) = zp −
∞∑

k=p+1

ak,νz
k (ak,ν = 0; ν = 1, 2, · · · , l), (2.16.19)

are in the class UST m(p, q;α, β) for every ν = 1, 2, · · · , l, then the function f(z) given by

f(z) = zp −
∞∑

k=p+1

(
l∑

ν=1

µνak,ν

)
zk,

is also in the class UST m(p, q;α, β).

Proof. In order to proof this result, the assertion of Theorem 2.16.2 is used.

Theorem 2.16.9. ([96]) Let fp(z) = zp and

fk(z) = zp − [δ(p− q,m)− α] δ(p, q)[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

zk (k = p+ 1).

(2.16.20)

Then f(z) is in the class UST m(p, q;α, β) if and only if it can be expressed in the following

form:

f(z) =
∞∑
k=p

µkfk(z), (2.16.21)

where

µk = 0, k = p and
∞∑
k=p

µk = 1.

Proof. The part related to sufficiency is easily proved by using again the assertion of

Theorem 2.16.2. For the necessity condition, we can see that the function f(z) can be expressed

in the form (2.16.21) if we set

µk =

[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)ak

[δ(p− q,m)− α] δ(p, q)
(k = p+ 1)
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and

µp = 1−
∞∑

k=p+1

µk,

such that µp = 0. This is already assured by Corollary 2.16.4.

Corollary 2.16.10. ([96]) The extreme points of the class UST m(p, q;α, β) are the func-

tions fp(z) = zp and

fk(z) = zp − [δ(p− q,m)− α] δ(p, q)[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

zk (k = p+ 1).

In what follows we will see results related to radii of close-to-convexity, starlikeness and

convexity:

Theorem 2.16.11. ([96]) Let the function f(z) defined by (2.16.7) be in the class

UST m(p, q;α, β). Then f(z) is a p-valent close-to-convex function of order ξ (0 5 ξ < p) for

|z| 5 r1(p, q;α, β; ξ), where

r1 = inf
k=p+1

{[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

[δ(p− q,m)− α] δ(p, q)

(
p− ξ
k

)} 1
k−p

.

(2.16.22)

The result is sharp and the extremal functions are given by (2.16.12).

Proof. By applying Corollary 2.16.4 and the form (2.16.7), we see that, for |z| 5 r1, we

have ∣∣∣∣f ′(z)zp−1
− p
∣∣∣∣ 5 p− ξ for |z| 5 r1(p, q;α, β; ξ) , (2.16.23)

which completes the proof of Theorem 2.16.11.

Theorem 2.16.12. ([96]) Let the function f(z) defined by (2.16.7) be in the class

UST m(p, q;α, β).Then f(z) is a p-valent starlike function of order ξ (0 5 ξ < p) for |z| 5
r2(p, q, α, β, ξ), where

r2 = inf
k=p+1

{[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

[δ(p− q,m)− α] δ(p, q)

(
p− ξ
k − ξ

)} 1
k−p

.

(2.16.24)

The result is sharp and the extremal functions are given by (2.16.12).

Proof. Using the same steps as in the proof of Theorem 2.16.11, it is seen that
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∣∣∣∣zf ′(z)f(z)
− p
∣∣∣∣ 5 p− ξ for |z| 5 r2(p, q, α, β, ξ). (2.16.25)

Corollary 2.16.13. ([96]) Let the function f(z) defined by (2.16.7) be in the class

UST m(p, q;α, β). Then f(z) is a p-valent convex function of order ξ (0 5 ξ < p) for |z| 5
r3(p, q, α, β, ξ), where

r3 = inf
k=p+1

{[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

[δ(p− q,m)− α] δ(p, q)

(
p(p− ξ)
k(k − ξ)

)} 1
k−p

.

(2.16.26)

The result is sharp and the extremal function is given by (2.16.12).

In view of Theorem 2.16.2, we see that the function:

zp −
∞∑

k=p+1

dkz
k

is in the class UST m(p, q;α, β) as long as 0 5 dk 5 ak for all k = p+1, where ak is the coefficient

corresponding to a function which is in the class UST m(p, q;α, β). We are thus led to the next

theorem.

Theorem 2.16.14.( [96]) Let the function f(z) defined by (2.16.7) be in the class

UST m(p, q;α, β). Also let c be a real number such that c > −p. Then the function F (z) defined

by

F (z) =
c+ p

zc

∫ z

0
tc−1f(t)dt (c > −p) (2.16.27)

also belongs to the class UST m(p, q;α, β).

Proof. From the representation (2.16.27) of F (z), it follows that

F (z) = zp −
∞∑

k=p+1

dkz
k,

where

dk =

(
c+ p

k + c

)
ak 5 ak (k = p+ 1).

Putting c = 1− p in Theorem 2.16.14, we get the following corollary.

Corollary 2.16.15. ([96]) Let the function f(z) defined by (2.16.7) be in the class
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UST m(p, q;α, β). Also let F (z) be defined by

F (z) =
1

z1−p

∫ z

0

f(t)

tp
dt. (2.16.28)

Then F (z) ∈ UST m(p, q;α, β).

Remark 2.16.16. ([96]) The converse of Theorem 2.16.14 is not true. This observation

leads to the following result involving the radius of p-valence.

Theorem 2.16.17. ([96]) Let the function

F (z) = zp −
∞∑

k=p+1

akz
k (ak = 0)

be in the class UST m(p, q;α, β). Also let c be a real number such that c > −p. Then the function

f(z) given by (2.16.27) is p-valent in |z| < R∗p, where

R∗p = inf
k=p+1

{[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

[δ(p− q,m)− α] δ(p, q)

(
p(c+ p)

k(c+ k)

)} 1
k−p

.

(2.16.29)

The result is sharp.

Proof. From the definition (2.16.27), we have

f(z) =
z1−c[zc F (z)]′

c+ p
= zp −

∞∑
k=p+1

k + c

c+ p
akz

k (c > −p).

In order to obtain the required result, it suffices to show that∣∣∣∣f ′(z)zp−1
− p
∣∣∣∣ 5 p for |z| < R∗p ,

where R∗p is given by (2.16.29). Making use of Theorem 2.16.2, we get that the required inequality

is true if

|z| 5

([
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

[δ(p− q,m)− α] δ(p, q)

(
p(c+ p)

k(c+ k)

)) 1
k−p

(2.16.30)

(k = p+ 1).

The result is sharp for the function f(z) given by

f(z) = zp−
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(c+ k) [δ(p− q,m)− α] δ(p, q)

(c+ p)
[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

zk (k = p+ 1).

(2.16.31)

The next two results are related to the modified Hadamard product:

Let the functions fν(z) (ν = 1, 2) be defined by (2.16.19). The modified Hadamard product

of f1(z) and f2(z) is defined by

(f1 ∗ f2)(z) = zp −
∞∑

k=p+1

ak,1ak,2z
k. (2.16.32)

Theorem 2.16.18. ([96]) Let the functions fν(z) (ν = 1, 2), defined by (2.16.19) be in the

class UST m(p, q;α, β). Then (f1 ∗ f2)(z) ∈ UST m(p, q; η, β), where

η = δ(p− q,m)− [δ(p−q,m)−α]2(1+β)[δ(p−q+1,m)−δ(p−q,m)]δ(p,q)[
(1+β)[δ(p−q+1,m)−δ(p−q,m)]+[δ(p−q,m)−α]

]2
δ(p+1,q)−[δ(p−q,m)−α]2 δ(p,q)

.

(2.16.33)

The result is sharp when

f1(z) = f2(z) = f(z),

where the function f(z) is given by

f(z) = zp − [δ(p− q,m)− α] δ(p, q)[
(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(p+ 1, q)

zp+1.

(2.16.34)

Proof. Employing the technique used earlier by Schild and Silverman [92], we need to find

the largest η such that

∞∑
k=p+1

[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− η]

]
δ(k, q)

[δ(p− q,m)− η] δ(p, q)
ak,1ak,2 5 1. (2.16.35)

Using the inequalities for the coefficients of the functions in the class UST m(p, q; η, β), and by

applying the Cauchy-Schwarz inequality, it is sufficient to show that

η 5 δ(p− q,m)− [δ(p−q,m)−α]2(1+β)[δ(k−q,m)−δ(p−q,m)]δ(p,q)[
(1+β)[δ(k−q,m)−δ(p−q,m)]+[δ(p−q,m)−α]

]2
δ(k,q)−[δ(p−q,m)−α]2 δ(p,q)

.

(2.16.36)
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Now, defining the function G(k) by

G(k) = δ(p− q,m)− [δ(p−q,m)−α]2(1+β)[δ(k−q,m)−δ(p−q,m)]δ(p,q)[
(1+β)[δ(k−q,m)−δ(p−q,m)]+[δ(p−q,m)−α]

]2
δ(k,q)−[δ(p−q,m)−α]2 δ(p,q)

,

(2.16.37)

we see that G(k) is an increasing function of k, k = p+ 1, which obviously completes the proof.

Using similar arguments to those from the proof of Theorem 2.16.18, we obtain the following

result.

Theorem 2.16.19. ([96]) Let the function f1(z) defined by (2.16.19) be in the class

UST m(p, q;α, β). Suppose also that the function f2(z) defined by (2.16.19) be in the class

UST m(p, q;ϕ, β). Then

(f1 ∗ f2)(z) ∈ UST m(p, q; ζ, β),

where

ζ = δ(p− q,m)− [δ(p−q,m)−α][δ(p−q,m)−ϕ](1+β)[δ(p−q+1,m)−δ(p−q,m)]δ(p,q)
[(1+β)[δ(p−q+1,m)−δ(p−q,m)]+[δ(p−q,m)−α]][(1+β)[δ(p−q+1,m)−δ(p−q,m)]+[δ(p−q,m)−ϕ]]δ(p+1,q)−Ω

(2.16.38)

with

Ω = [δ(p− q,m)− α][δ(p− q,m)− ϕ]δ(p, q).

The result is sharp for the functions fν(z) (ν = 1, 2) given by

f1(z) = zp − [δ(p− q,m)− α] δ(p, q)[
(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(p+ 1, q)

zp+1

(2.16.39)

and

f2(z) = zp − [δ(p− q,m)− ϕ] δ(p, q)[
(1 + β)[δ(p− q + 1,m)− δ(p− q,m)] + [δ(p− q,m)− ϕ]

]
δ(p+ 1, q)

zp+1.

(2.16.40)

Theorem 2.16.20. ([96]) Let the functions fν(z) (ν = 1, 2) defined by (2.16.19) be in the

class UST m(p, q;α, β). Then the function h(z) given by

h(z) = zp −
∞∑

k=p+1

(a2
k,1 + a2

k,2)zk (2.16.41)
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belongs to the class UST m(p, q;α, φ), where

φ = δ(p− q,m)− 2[δ(p−q,m)−α]2(1+β)[δ(p−q+1,m)−δ(p−q,m)]δ(p,q)[
(1+β)[δ(p−q+1,m)−δ(p−q,m)]+[δ(p−q,m)−α]

]2
δ(p+1,q)−2[δ(p−q,m)−α]2δ(p,q)

.

(2.16.42)

The result is sharp for

f1(z) = f2(z) = f(z),

where the function f(z) is given by (2.16.34).

Proof. If we combine the assertions of Theorem 2.16.2 for both of the functions f1(z) and

f2(z), we get

∞∑
k=p+1

1

2

([
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

[δ(p− q,m)− α]δ(p, q)

)2

(a2
k,1 + a2

k,2) 5 1.

(2.16.43)

Therefore, we need to find the largest φ = φ(p, q, α, β) such that

[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− φ]

]
δ(k, q)

[δ(p− q,m)− φ]δ(p, q)
5 1

2

([
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]
δ(k, q)

[δ(p− q,m)− α]δ(p, q)

)2

.

(2.16.44)

Since D(k) given by

D(k) = δ(p− q,m)− 2[δ(p− q,m)− α]2(1 + β)[δ(k − q,m)− δ(p− q,m)]δ(p, q)[
(1 + β)[δ(k − q,m)− δ(p− q,m)] + [δ(p− q,m)− α]

]2
δ(k, q)− 2[δ(p− q,m)− α]2δ(p, q)

is an increasing function of k (k = p + 1), we obtain φ 5 D(p + 1). The proof of Theorem

2.16.20 is thus completed.

2.17 Fractional calculus of analytic functions concerned

with Möbius transformations

Applying the Möbius transformations, we consider in this section, some properties of frac-

tional calculus of f(z) ∈ A. Also some interesting examples for fractional calculus are given.

The results are published with D. Breaz and S. Owa in [34].

In this section we work with the class A of functions f(z):

f(z) = z +
∞∑
k=2

akz
k, (2.17.1)

analytic in the open unit disk, U = {z ∈ C : |z| < 1}.
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and with the characterization

Re

(
zf ′(z)

f(z)

)
> α (z ∈ U) (2.17.2)

with real α (0 5 α < 1), for f(z) starlike of order α in U. We denote by S∗(α) the class of all

starlike functions f(z) of order α in U and S∗(0) ≡ S∗. Also we will use the characterization

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ U) (2.17.3)

with some real α (0 5 α < 0), for f(z) convex of order α in U. We denote by K(α) the class of

all such functions f(z) and K(0) ≡ K. In view of definitions for the classes S∗(α) and K(α), we

know that

(i) f(z) ∈ K(α) if and only if zf ′(z) ∈ S∗(α)

and

(ii) f(z) ∈ S∗(α) if and only if

∫ z

0

f(t)

t
dt ∈ K(α).

Further, MacGregor [58] and Wilken and Feng [101] have the sharp inclusion relation that

K(α) ⊂ S∗(β) for each α(0 5 α < 1) with

β =


1− 2α

22(1−α)(1− 22α−1)
(α 6= 1

2
)

1

2log2
(α =

1

2
).

(2.17.4)

For α = 0, Marx [59] and Strohhäcker [99] showed that K ⊂ S∗(1

2
). Also, by Robertson [89], we

know that the extremal function f(z) for the class S∗(α) is

f(z) =
z

(1− z)2(1−α)
= z +

∞∑
k=2

∏k
j=2(j − 2α)

(k − 1)!
zk (2.17.5)

and the extremal function f(z) for the class K(α) is

f(z) =



1− (1− z)2α−1

2α− 1
= z +

∞∑
k=2

∏k
j=2(j − 2α)

k!
zk (α 6= 1

2
)

−log(1− z) = z +

∞∑
k=2

1

k
zk (α =

1

2
).

(2.17.6)

For f(z) ∈ A, we apply the following Möbius transformation

w(ζ) =
z + ζ

1 + zζ
(ζ ∈ U) (2.17.7)
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for a fixed z ∈ U. This Möbius transformation w(ζ) maps U onto itself and ζ = 0 to w(0) = z.

From among the various definitions for fractional calculus (that is, fractional derivatives

and fractional integrals) given in the literature, we have to recall here the following definitions

for fractional calculus which are used by Owa [71], [72] and by Owa and Srivastava [74].

Definition 2.17.1. The fractional integral of order λ is defined, for f(z) ∈ A, by

D−λz f(z) =
1

Γ(λ)

∫ z

0

f(ζ)

(z − ζ)1−λdζ, (2.17.8)

where λ > 0 and the multiplicity of (z− ζ)λ−1 is removed by requiring log(z− ζ) to be real when

z − ζ > 0.

Definition 2.17.2. The fractional derivative of order λ is defined, for f(z) ∈ A, by

Dλ
z f(z) =

d

dz

(
Dλ−1
z f(z)

)
(2.17.9)

=
1

Γ(1− λ)

d

dz

∫ z

0

f(ζ)

(z − ζ)λ
dζ,

where 0 5 λ < 1 and the multiplicity of (z − ζ)−λ is removed as in Definition 2.17.1 above.

Definition 2.17.3. Under the hypotheses of Definition 2.17.2, the fractional derivative of

order n+ λ is defined by

Dn+λ
z f(z) =

dn

dzn

(
Dλ
z f(z)

)
, (2.17.10)

where 0 5 λ < 1 and n ∈ N0 = 0, 1, 2, · · ·.

Remark 2.17.4. ([34]) In view of definitions for the fractional calculus of f(z) ∈ A, we

see that

D−λz f(z) =
1

Γ(2 + λ)
z1+λ +

2!

Γ(3 + λ)
a2z

2+λ + · · ·+ k!

Γ(k + 1 + λ)
akz

k+λ + · · · (2.17.11)

=
1

Γ(2 + λ)
z1+λ +

∞∑
k=2

k!

Γ(k + 1 + λ)
akz

k+λ (λ > 0),

Dλ
z f(z) =

1

Γ(2− λ)
z1−λ +

2!

Γ(3− λ)
a2z

2−λ + · · ·+ k!

Γ(k + 1− λ)
akz

k−λ + · · · (2.17.12)

=
1

Γ(2− λ)
z1−λ +

∞∑
k=2

k!

Γ(k + 1− λ)
akz

k−λ (0 5 λ < 1),
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and

Dn+λ
z f(z) =

dn

dzn

(
1

Γ(2− λ)
z1−λ +

∞∑
k=2

k!

Γ(k + 1− λ)
akz

k−λ

)
(2.17.13)

=
1

Γ(2− n− λ)
z1−n−λ +

∞∑
k=2

k!

Γ(k + 1− n− λ)
akz

k−n−λ

for 0 5 λ < 1 and n ∈ N0.

Therefore, we can write that

Dn+λ
z f(z) =

dn

dzn

(
Dλ
z f(z)

)
= Dλ

z

(
dn

dzn
f(z)

)
(2.17.14)

and

Dλ
z f(z) =

1

Γ(2− λ)
z1−λ +

∞∑
k=2

k!

Γ(k + 1− λ)
akz

k−λ (2.17.15)

for any real number λ.

Using the fractional calculus (2.17.15), we define

F (z) = Γ(2− λ)zλDλ
z f(z) = z +

∞∑
k=2

k!Γ(2− λ)

Γ(k + 1− λ)
akz

k (λ ∈ R, λ 6= 2). (2.17.16)

If we take λ = −1 in (2.17.16), then

F (z) = Γ(3)z−1D−1
z f(z) =

2

z

∫ z

0
f(t)dt = z +

∞∑
k=2

2

k + 1
ak · zk

implies the Libera integral operator defined by Libera [54]. Therefore, F (z) given by (2.17.16)

is the generalization operator of Libera integral operator.

Let us give two examples for the fractional operator F (z) defined in (2.17.16).

Example 2.17.5. ([34]) Let us define f(z) by

f(z) = z +
2− λ

6
z2 ∈ A (−1 5 λ < 2). (2.17.17)

Then, we have that

Re

(
zf ′(z)

f(z)

)
= Re

(
2− 1

1 +Mz

)
(2.17.18)

= 2− 1 +Mcosθ

1 +M2 + 2Mcosθ
(z = eiθ),
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where M =
2− λ

6
> 0. If we define

h(t) =
1 +Mt

1 +M2 + 2Mt
(t = cosθ), (2.17.19)

then

h′(t) =
M(M + 1)(M − 1)

(1 +M2 + 2Mt)2
< 0 (0 < M 5

1

2
). (2.17.20)

This shows us that

h(t) 5 h(−1) =
1

1−M
, (2.17.21)

that is, that

Re

(
zf ′(z)

f(z)

)
> 2− 1

1−M
=

2 + 2λ

4 + λ
> 0 (z ∈ U). (2.17.22)

Therefore, f(z) ∈ S∗
(

2 + 2λ

4 + λ

)
.

For f(z) given by (2.17.17), F (z) becomes

F (z) = Γ(2− λ)zλDλ
z f(z) = z +

1

3
z2 (−1 5 λ < 2). (2.17.23)

Then, we see that F (z) ∈ S∗
(

1

2

)
.

Next, let us consider the function g(ζ) given by

g(ζ) =
(F ◦ w)(ζ)− F (z)

(1− |z|2)F ′(z)
(ζ ∈ U) (2.17.24)

for a fixed z ∈ U, where w(ζ) is given by (2.17.7). Then, it is easy to see that g(ζ) ∈ A. Taking

z =
1

2
in (2.17.24), we have that

g(ζ) =
ζ(11ζ + 16)

4(ζ + 2)2
(ζ ∈ U) (2.17.25)

and

Re

(
ζg′(ζ)

g(ζ)

)
= Re

(
1− ζ(11ζ + 10)

(ζ + 2)(11ζ + 16)

)
(2.17.26)

= 1− 704cos2θ + 848cosθ + 149

1408cos2θ + 3268cosθ + 1885
(θ = eiθ).

Letting

H(t) =
704t2 + 848t+ 149

1408t2 + 3268t+ 1885
(t = cosθ), (2.17.27)

we obtain that

H ′(t) =
12(9224t2 + 186208t+ 92629)

(1408t2 + 3268t+ 1885)2
. (2.17.28)

This shows that H ′(−1) < 0, H ′(0) > 0, and H ′(1) > 0. Therefore, there exists some t0 such
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that H ′(t0) = 0 for −1 < t0 < 0. It follows that

Max−15t51H(t) = Max{H(−1), H(1)} = H(1) =
7

27
. (2.17.29)

Thus, we say that

Re

(
ζg′(ζ)

g(ζ)

)
> 1− 7

27
=

20

27
(ζ ∈ U). (2.17.30)

Consequently, we say that F (z) ∈ S∗
(

1

2

)
, g(ζ) ∈ S∗

(
20

27

)
for f(z) ∈ S∗

(
2 + 2λ

4 + λ

)
given by

(2.17.17).

If λ = −1

2
, then

f(z) = z +
5

12
z2 ∈ S∗

(
2

7

)
.

The open unit disk U is mapped on a starlike domain of order
2

7
.

If λ =
1

3
, then

f(z) = z +
5

18
z2 ∈ S∗

(
8

13

)
.

Thus, f(z) maps U on to a starlike domain of order
8

13
.

Example 2.17.5 means that there is some function f(z) ∈ S∗(α) such that F (z) ∈ S∗(β)

and g(ζ) ∈ S∗(γ).

Next, we consider

Example 2.17.6. ([34]) Let a function f(z) be given by

f(z) = z +
2− λ

12
z2 ∈ A (−1 5 λ < 2). (2.17.31)

Then, we have that

Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
2− 1

1 + 2Mz

)
(2.17.32)

= 2− 1 + 2Mcosθ

1 + 4M2 + 4Mcosθ
(z = eiθ),

where M =
2− λ

12
> 0. Defining h(t) by

h(t) =
1 + 2Mt

1 + 4M2 + 4Mt
(t = cosθ), (2.17.33)

we have that

h′(t) =
2M(2M + 1)(2M − 1)

(1 + 4M2 + 4Mt)2
< 0 (0 < M 5

1

4
) (2.17.34)
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which shows us that

h(t) 5 h(−1) =
1

1− 2M
. (2.17.35)

Thus, we obtain that

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 2− 1

1− 2M
=

2 + 2λ

4 + λ
> 0 (z ∈ U). (2.17.36)

This gives us that f(z) ∈ K
(

2 + 2λ

4 + λ

)
.

For f(z) given by (2.17.31), F (z) becomes

F (z) = Γ(2− λ)zλDλ
z f(z) = z +

1

6
z2 (−1 5 λ < 2). (2.17.37)

Then, it is easy to see that F (z) ∈ K
(

1

2

)
.

For this F (z), we consider g(ζ) defined by (2.17.24). If we take z =
1

2
for g(ζ), we have that

g(ζ) =
ζ(17ζ + 28)

7(ζ + 2)2
(ζ ∈ U) (2.17.38)

and

Re

(
1 +

ζg′′(ζ)

g′(ζ)

)
= Re

(
1− ζ(10ζ + 11)

(5ζ + 7)(ζ + 2)

)
(2.17.39)

= 1− 280cos2θ + 379cosθ + 97

280cos2θ + 646cosθ + 370
(ζ = eiθ).

If we write that

H(t) =
280t2 + 379t+ 97

280t2 + 646t+ 370
(t = cosθ), (2.17.40)

then

H ′(t) =
24(3115t2 + 6370t+ 3232)

(280t2 + 646t+ 370)2
. (2.17.41)

Since H ′(−1) < 0, H ′(0) > 0, and H ′(1) > 0, there exists some t0 such that H ′(t0) = 0 for

−1 < t0 < 0. This gives us that

Max−15t51H(t) = Max{H(−1), H(1)} = H(1) =
7

12
. (2.17.42)

It follows that

Re

(
1 +

ζg′′(ζ)

g′(ζ)

)
> 1− 7

12
=

5

12
(ζ ∈ U). (2.17.43)

Therefore, we say that F (z) ∈ K
(

1

2

)
, g(ζ) ∈ K

(
5

12

)
for f(z) ∈ K

(
2 + 2λ

4 + λ

)
.

If λ = −2

3
, then

f(z) = z +
2

9
z2 ∈ K

(
1

5

)
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maps U on to a convex domain of order
1

5
.

If λ =
3

2
, then

f(z) = z +
1

24
z2 ∈ K

(
10

11

)
.

This function f(z) maps U on to a convex domain of order
10

11
.

Example 2.17.6 says that there exists some function f(z) ∈ K(α) such that F (z) ∈ K(β)

and g(ζ) ∈ K(γ).

In view of the previous examples, we introduce

Definition 2.17.7. ([34]) Let f(z) ∈ A, F (z) = Γ(2− λ)zλDλ
z f(z) with −1 5 λ < 2 and

let g(ζ) be defined by (2.17.24) for a fixed z ∈ U. Then we say that

(i) f(z) ∈ S0 if g(ζ) is univalent in U,

(ii) f(z) ∈ S∗0 (α) if g(ζ) ∈ S∗(α)

and

(iii) f(z) ∈ K0(α) if g(ζ) ∈ K(α).

Also, we write that S∗0 (0) ≡ S∗0 and K0(0) ≡ K0 when α = 0.

In order to discuss our classes S0,S∗0 (α) and K0(α), we need the following lemma due to

Robertson [89] (also see Duren [42]).

Lemma 2.17.8 If f(z) ∈ S∗(α), then

|ak| 5
∏k
j=2(j − 2α)

(k − 1)!
(k = 2, 3, 4, · · · ) (2.17.44)

with the equality in (2.17.44) with f(z) given by (2.17.5). If f(z) ∈ K(α), then

|ak| 5
∏k
j=2(j − 2α)

k!
(k = 2, 3, 4, · · · ) (2.17.45)

with the equality in (2.17.45) with f(z) given by (2.17.6).

We also need the following lemma.
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Lemma 2.17.9. ([34]) If g(ζ) is defined by

g(ζ) =
(f ◦ w)(ζ)− f(z)

(1− |z|2)f ′(z)
(ζ ∈ U) (2.17.46)

for a fixed z ∈ U for f(z) ∈ A, then

dn

dζn
(f ◦ w)(ζ)

f ′(z)
(2.17.47)

=
n!(n− 1)!(1 + zζ)2n

(1− |z|2)n−1

n−1∑
j=0

g(n−j)(ζ)zj

(n− j)!(n− j − 1)!j!(1 + zζ)j


for n = 1, 2, 3, . . ., where w(ζ) is given by (2.17.7).

Proof We use the mathematical induction to prove (2.40). For n = 1, the right-hand side

of (2.17.47) becomes that

(1 + zζ)2g′(ζ) =

d

dζ
(f ◦ w)(ζ)

f ′(z)
, (2.17.48)

which is given the left-hand side of (2.17.47) for n = 1. Therefore, (2.17.47) holds true for n = 1.

Assume that the relation (2.17.47) is true for a fixed positive integer n. Then, some calculations

lead us to
dn+1

dζn+1
(f ◦ w)(ζ)(1− |z|2)

(1 + zζ)2f ′(z)
(2.17.49)

=
n!(n− 1)!(1 + zζ)2n

(1− |z|2)n−1


n−1∑
j=0

1

(n− j)!(n− j − 1)!j!

(
g(n+1−j)(ζ) +

(2n− j)g(n−j)(ζ)z

1 + zζ

)
zj

(1 + zζ)j


=

(n+ 1)!n!(1 + zζ)2n

(1− |z|2)n−1

 n∑
j=0

g(n+1−j)(ζ)zj

(n+ 1− j)!(n− j)!j!(1 + zζ)j

 .

This means that the relation (2.17.47) holds true for n+1. Thus, by applying the mathematical

induction, we complete the proof of the lemma.

Taking ζ = 0 in Lemma 2.17.9, we have

Corollary 2.17.10. ([34]) If g(ζ) is defined by (2.17.46) for f(z) ∈ A, then we have

∣∣∣∣∣f (n)(z)

f ′(z)

∣∣∣∣∣ 5 n!(n− 1)!

(1− |z|2)n−1

n−1∑
j=0

|g(n−j)(0)||z|j

(n− j)!(n− j − 1)!j!

 (2.17.50)
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for z ∈ U. Furthermore, we have∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ 5 |g′′(0)|+ 2|g′(0)||z|
1− |z|2

(z ∈ U). (2.17.51)

Applying Corollary 2.17.10, we have

Theorem 2.17.11. ([34]) Let F (z) be defined by (2.17.16) for f(z) ∈ A with −1 5 λ < 2.

(i) If f(z) ∈ S0, then∣∣∣∣∣F (n)(z)

F ′(z)

∣∣∣∣∣ 5 n!(n+ |z|)
(1− |z|)n−1(1 + |z|)

(n = 1, 2, 3, · · · ) (2.17.52)

with the equality for g(ζ) given by

g(ζ) =
ζ

(1 + eiθζ)2
(θ ∈ R). (2.17.53)

(ii) If f(z) ∈ S∗0 (α), then

∣∣∣∣∣F (n)(z)

F ′(z)

∣∣∣∣∣ 5 n!(n− 1)!

(1− |z|2)n−1

n−1∑
j=0

∏n−j
k=2(k − 2α)

j!((n− j − 1)!)2
|z|j
 (2.17.54)

with the equality for g(ζ) given by

g(ζ) =
ζ

(1 + eiθζ)2(1−α)
(θ ∈ R). (2.17.55)

(iii) If f(z) ∈ K0(α), then

∣∣∣∣∣F (n)(z)

F ′(z)

∣∣∣∣∣ 5 n!(n− 1)!

(1− |z|2)n−1

n−1∑
j=0

∏n−j
k=2(k − 2α)

j!(n− j)!(n− j − 1)!
|z|j
 (n = 1, 2, 3, . . .) (2.17.56)

with the equality for g(ζ) given by

g(ζ) =


1− (1− ζ)2α−1

2α− 1

(
α 6= 1

2

)
,

−log(1− ζ)
(
α = 1

2

)
.

(2.17.57)
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Proof Note that

g(ζ) =
(F ◦ w)(ζ)− F (z)

(1− |z|2)F ′(z)
(ζ ∈ U)

for F (z) = Γ(2− λ)zλDλ
z f(z). Therefore, Corollary 2.17.10 gives us that

∣∣∣∣∣F (n)(z)

F ′(z)

∣∣∣∣∣ 5 n!(n− 1)!

(1− |z|2)n−1

n−1∑
j=0

|g(n−j)(0)||z|j

(n− j)!(n− j − 1)!j!

 . (2.17.58)

According to Lemma 2.17.8, we have

|g(n−j)(0)| 5 (n− j)!(n− j), (2.17.59)

if f(z) ∈ S0, then we calculate that

∣∣∣∣∣F (n)(z)

F ′(z)

∣∣∣∣∣ 5 n!(n− 1)!

(1− |z|2)n−1

n−1∑
j=0

n− j
(n− j − 1)!j!

|z|j
 (2.17.60)

=
n!(n+ |z|)

(1− |z|)n−1(1 + |z|)
,

because
n−1∑
j=0

n− j
(n− j − 1)!j!

|z|j =
(n+ |z|)(1 + |z|)n−2

(n− 1)!
. (2.17.61)

If f(z) ∈ S∗0 (α), then

|g(n−j)(0)| 5 (n− j)
n−j∏
k=2

(k − 2α) (g′(0) = 1) (2.17.62)

by means of (2.17.44). This implies the inequality (2.17.54) for f(z) ∈ S∗0 (α). Furthermore, if

f(z) ∈ K0(α), then g(ζ) satisfies

|g(n−j)(0)| 5
n−j∏
k=2

(k − 2α) (g′(0) = 1), (2.17.63)

which implies the inequality (2.17.56). Consequently, we complete the proof of the theorem.

Since g′(0) = 1, letting n = 2 in Theorem 2.17.11, we have

Corollary 2.17.12. ([34]) Let f(z) ∈ A with −1 5 λ < 2.

(i) If f(z) ∈ S0, then∣∣∣∣λ(λ− 1)Dλ
z f(z) + 2λzDλ+1

z f(z) + z2Dλ
z f(z)

z(λDλ
z f(z) + zDλ+1

z f(z)

∣∣∣∣ 5 2(2 + |z|)
1− |z|2

(2.17.64)
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for z ∈ U.

(ii) If f(z) ∈ S∗0 (α), then∣∣∣∣λ(λ− 1)Dλ
z f(z) + 2λzDλ+1

z f(z) + z2Dλ
z f(z)

z(λDλ
z f(z) + zDλ+1

z f(z)

∣∣∣∣ 5 2(2(1− α) + |z|)
1− |z|2

(2.17.65)

for z ∈ U.

(iii) If f(z) ∈ K0(α), then∣∣∣∣λ(λ− 1)Dλ
z f(z) + 2λzDλ+1

z f(z) + z2Dλ
z f(z)

z(λDλ
z f(z) + zDλ+1

z f(z)

∣∣∣∣ 5 2(1− α+ |z|)
1− |z|2

(2.17.66)

for z ∈ U.

Taking λ = 0 in Corollary 2.17.12, we have

Corollary 2.17.13. ([34]) If f(z) ∈ S0, then∣∣∣∣ f(z)

f ′(z)

∣∣∣∣ 5 2(2 + |z|)
1− |z|2

(z ∈ U), (2.17.67)

if f(z) ∈ S∗0 (α), then ∣∣∣∣ f(z)

f ′(z)

∣∣∣∣ 5 2(2(1− α) + |z|)
1− |z|2

(z ∈ U), (2.17.68)

and if f(z) ∈ K0(α), then ∣∣∣∣ f(z)

f ′(z)

∣∣∣∣ 5 2(1− α+ |z|)
1− |z|2

(z ∈ U), (2.17.69)

Now, having in view to discuss the univalence of fractional calculus F (z) given by (2.17.16),

we need the following lemma due to Miller and Mocanu [61] (or due to Jack [49]).

Lemma 2.17.14. ([34]) Let the function w(z) be analytic in U with w(0) = 0. If there

exists a point z0 ∈ U such that

Max|z|5|z0||w(z)| = |w(z0)|, (2.17.70)

then
z0w

′(z0)

w(z0)
= k (2.17.71)

and

Re

(
1 +

z0w
′′(z0)

w′(z0)

)
= k, (2.17.72)
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where k = 1.

Now, we derive

Theorem 2.17.15. ([34]) If F (z) defined by (2.17.16) for f(z) ∈ A satisfies∣∣∣∣1 +
1

2

zF ′′(z)

F ′(z)
− zF ′(z)

F (z)

∣∣∣∣ < 2− α
4α

(z ∈ U) (2.17.73)

for some real α which satisfies 2(
√

2− 1) 5 α < 1, then

z2F ′(z)

F (z)2
≺ 1 + (1− α)z

1− z
(z ∈ U). (2.17.74)

Proof We define the function w(z) by

z2F ′(z)

F (z)2
=

1 + (1− α)w(z)

1− w(z)
(z ∈ U) (2.17.75)

with 2(
√

2− 1) 5 α < 1. Then, we see that w(z) is analytic in U with w(0) = 0, and that

1 +
1

2

zF ′′(z)

F ′(z)
− zF ′(z)

F (z)
=
zw′(z)

2

(
1− α

1 + (1− α)w(z)
+

1

1− w(z)

)
. (2.17.76)

If there exists a point z0 ∈ U such that

Max|z|5|z0||w(z)| = |w(z0)| = 1,

then Lemma 2.17.14 gives us that

z0w
′(z0) = kw(z0) (k = 1) (2.17.77)

and w(z0) = eiθ. This implies that∣∣∣∣1 +
1

2

z0F
′′(z0)

F ′(z0)
− z0F

′(z0)

F (z0)

∣∣∣∣ =
k

2

∣∣∣∣ 1− α
1 + (1− α)eiθ

+
1

1− eiθ

∣∣∣∣ (2.17.78)

=
2− α

2

∣∣∣∣ 1

(1− eiθ)(1 + (1− α)eiθ)

∣∣∣∣
=

2− α
2

1√
2(1− cosθ)(1 + (1− α)2 + 2(1− α)cosθ)

.

Letting

g(t) = (1− t)(1 + (1− α)2 + 2(1− α)t) (t = cosθ), (2.17.79)
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we have that

g′(t) = −(α2 + 4(1− α)t) 5 −(α2 + 4α− 4) 5 0 (2.17.80)

for 2(
√

2− 1) 5 α < 1. Thus

g(t) 5 g(−1) = 2α2. (2.17.81)

Therefore, F (z) satisfies ∣∣∣∣1 +
1

2

z0F
′′(z0)

F ′(z0)
− z0F

′(z0)

F (z0)

∣∣∣∣ = 2− α
4α

(2.17.82)

for 2(
√

2 − 1) 5 α < 1. This contradicts our condition (2.17.73) for F (z). Thus, w(z) satisfies

|w(z)| < 1 for all z ∈ U. With this reason above, we conclude that

z2F ′(z)

F (z)2
≺ 1 + (1− α)z

1− z
(z ∈ U.

Next, we show

Theorem 2.17.16. ([34]) If F (z) defined by (2.17.16) for f(z) ∈ A satisfies∣∣∣∣1 +
1

2

zF ′′(z)

F ′(z)
− zF ′(z)

F (z)

∣∣∣∣ < α

2(1 + α)
(z ∈ U) (2.17.83)

for some real α > 0, then ∣∣∣∣z2F ′(z)

F (z)2
− 1

∣∣∣∣ < α (z ∈ U). (2.17.84)

Proof Let us define the function w(z) by

z2F ′(z)

F (z)2
− 1 = αw(z) (z ∈ U). (2.17.85)

Then ∣∣∣∣1 +
1

2

zF ′′(z)

F ′(z)
− zF ′(z)

F (z)

∣∣∣∣ =
α

2

∣∣∣∣ zw′(z)

1 + αw(z)

∣∣∣∣ < α

2(1 + α)
(z ∈ U). (2.17.86)

Suppose that there exists a point z0 ∈ U such that

Max|z|5|z0||w(z)| = |w(z0)| = 1, (2.17.87)

then we can write that

z0w
′(z0) = kw(z0) (k = 1)

and w(z0) = eiθ. Therefore, we have that∣∣∣∣1 +
1

2

z0F
′′(z0)

F ′(z0)
− z0F

′(z0)

F (z0)

∣∣∣∣ =
kα

2

∣∣∣∣ 1

1 + αeiθ

∣∣∣∣ = α

2(1 + α)
, (2.17.88)
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which contradicts our condition (2.17.83). Thus, we say that there is no z0 ∈ U such that

|w(z0)| = 1. Consequently, letting |w(z)| < 1 for all z ∈ U, we prove the theorem.

Taking α = 1 in Theorem 2.17.16, we have

Corollary 2.17.17. ([34]) If F (z) defined by (2.17.16) for f(z) ∈ A satisfies∣∣∣∣1 +
1

2

zF ′′(z)

F ′(z)
− zF ′(z)

F (z)

∣∣∣∣ < 1

4
(z ∈ U), (2.17.89)

then ∣∣∣∣z2F ′(z)

F (z)2
− 1

∣∣∣∣ < 1 (z ∈ U). (2.17.90)

Remark 2.17.18. ([34]) In view of the result for the univalence of analytic functions due

to Ozaki and Nunokawa [75], we see that F (z) satisfying the inequality (2.17.90) is univalent in

U.

Example 2.17.19. ([34]) Let us consider the function f(z) given by

f(z) = D−λz

(
z1−λ

Γ(2− λ)
e
z
2

)
(−1 5 λ < 2). (2.17.91)

Then we have that

F (z) = Γ(2− λ)zλDλ
z f(z) = ze

z
2 , (2.17.92)

zF ′(z)

F (z)
= 1 +

1

2
z, (2.17.93)

and
zF ′′(z)

F ′(z)
=

1

2
z +

z

2 + z
. (2.17.94)

Therefore, F (z) satisfies∣∣∣∣1 +
1

2

zF ′′(z)

F ′(z)
− zF ′(z)

F (z)

∣∣∣∣ =
1

4

∣∣∣∣ z2

2 + z

∣∣∣∣ < 1

4
(z ∈ U). (2.17.95)

For such a function F (z), we see that∣∣∣∣z2F ′(z)

F (z)2
− 1

∣∣∣∣ =

∣∣∣∣e− z2 (1 +
1

2
z

)
− 1

∣∣∣∣ 5 c (z ∈ U). (2.17.96)

By using the computer, we know that c < 0.18 < 1. Indeed, the function F (z) satisfying

(2.17.93) implies that

Re

(
zF ′(z)

F (z)

)
>

1

2
(z ∈ U). (2.17.97)
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This shows us that F (z) ∈ S∗
(

1

2

)
.

2.18 Classes of analytic functions, based on subordi-

nations

Applying the extremal function for the subclass S∗(α) of A, new classes P∗(α) and Q∗(α)

are considered using certain subordinations. The object of this section is to present some inter-

esting properties for f(z) belonging to the classes P∗(α) and Q∗(α). The results were obtained

together with S. Owa and published in [37].

For the classes defined in the Definitions 1.1.2, 1.1.10 and 1.1.12, we know that K(α) ⊂

S∗(α) ⊂ S∗ ⊂ S ⊂ A and that f(z) ∈ S∗(α) if and only if

∫ z

0

f(t)

t
dt ∈ K(α). The function

f(z) given by

f(z) =
z

(1− z)2(1−α)
= z +

∞∑
n=2

n∏
j=2

(j − 2α)

(n− 1)!
zn (2.18.1)

is the extremal function for the class S∗(α), and the function f(z) given by

f(z) =



1− (1− z)2α−1

2α− 1
= z +

∞∑
n=2

n∏
j=2

(j − 2α)

n!
zn

(
α 6= 1

2

)

− log(1− z) = z +
∞∑
n=2

1

n
zn

(
α =

1

2

) (2.18.2)

is the extremal function for the class K(α) (see [42] or [62]).

Considering the principal value for
√
z, we consider a function f(z) given by

f(z) =
z

(1−
√
z)

2(1−α)
= z +

∞∑
n=2

n∏
j=2

(j − 2α)

(n− 1)!
z
n+1
2 . (2.18.3)

Then, f(z) satisfies

Re

(
zf ′(z)

f(z)

)
= Re

(
α+

1− α
1−
√
z

)
>

1 + α

2
(z ∈ U). (2.18.4)

Therefore, f(z) given by (2.18.3) is starlike of order
1 + α

2
in U.

In order to introduce our classes we need the subordination definition. Differential subor-
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2.18. Classes of analytic functions, based on subordinations

dinations were used in many papers of univalent function theory as for example, [30], [55], [90],

[91] and [93].

We know that, for analytic functions, f(z) is subordinated to g(z) if there exists an analytic

function w(z) in U satisfying w(0) = 0, |w(z)| < 1 (z ∈ U), f(z) = g(w(z)), writing:

f(z) ≺ g(z) (z ∈ U). (2.18.5)

Now, with the function f(z) given by (2.18.3), we introduce a new class of f(z) as follows.

Let A∗ be the class of functions f(z) given by

f(z) = z +
∞∑
n=2

an+1
2
z
n+1
2 (z ∈ U) (2.18.6)

which are analytic in U, where we consider the principal value for
√
z. If f(z) ∈ A∗ satisfies the

following subordination

f(z) ≺ g(z) =
z

(1−
√
z)2(1−α)

(z ∈ U) (2.18.7)

for some real α(0 5 α < 1), then we say that f(z) ∈ P∗(α). Also, if f(z) ∈ A∗ satisfies

zf ′(z) ∈ P∗(α), then we say that f(z) ∈ Q∗(α).

Further, we would like to study some properties of functions f(z) ∈ A∗ concerned with the

classes P∗(α) and Q∗(α).

Theorem 2.18.1. ([37])If f(z) ∈ A∗ satisfies

∞∑
n=2

(n− α)
∣∣∣an+1

2

∣∣∣ 5 1− α (2.18.8)

for some real α (0 5 α < 1), then f(z) ∈ P∗(α). The result is sharp for f(z) defined by

f(z) = z +
∞∑
n=2

(1− α)ε

n(n− 1)(n− α)
z
n+1
2 (2.18.9)

with |ε| = 1.

Proof. It is easy to know that if f(z) ∈ A∗ satisfies∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1− α
2

(z ∈ U) (2.18.10)
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2.18. Classes of analytic functions, based on subordinations

for some real α (0 5 α < 1), then

Re

(
zf ′(z)

f(z)

)
>

1 + α

2
(z ∈ U), (2.18.11)

that is, that f(z) ∈ P∗(α). In order to get (2.18.10), we notice that we have

∣∣∣∣zf ′(z)− f(z)

f(z)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∞∑
n=2

n−1
2 an+1

2
z
n+1
2

1 +
∞∑
n=2

an+1
2
z
n+1
2

∣∣∣∣∣∣∣∣ <
1− α

2
(z ∈ U) (2.18.12)

if f(z) satisfies
∞∑
n=2

n− 1

2

∣∣∣an+1
2

∣∣∣ 5 1− α
2

(
1−

∞∑
n=2

∣∣∣an+1
2

∣∣∣) , (2.18.13)

which is equivalent to
∞∑
n=2

(n− α)
∣∣∣an+1

2

∣∣∣ 5 1− α (2.18.14)

for some real α (0 5 α < 1), then f(z) ∈ P∗((α).

Further, if we consider a function f(z) given by (2.18.9), then

an+1
2

=
(1− α)ε

n(n− 1)(n− α)
(|ε| = 1). (2.18.15)

This shows us that
∞∑
n=2

(n− α)
∣∣∣an+1

2

∣∣∣ =
∞∑
n=2

1− α
n(n− 1)

(2.18.16)

= (1− α)
∞∑
n=2

(
1

n− 1
− 1

n

)
= 1− α.

Taking α = 0 in Theorem 2.18.1, we have

Corollary 2.18.2. ([37])If f(z) ∈ A∗ satisfies

∞∑
n=2

n
∣∣∣an+1

2

∣∣∣ 5 1, (2.18.17)

then f(z) ∈ P∗(0). The result is sharp for

f(z) = z +
∞∑
n=2

ε

n2(n− 1)
z
n+1
2 (|ε| = 1). (2.18.18)

Noting that f(z) ∈ Q∗(α) if and only if zf ′(z) ∈ P∗(α), we have
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2.18. Classes of analytic functions, based on subordinations

Theorem 2.18.3.If f(z) ∈ A∗ satisfies

∞∑
n=2

(n+ 1)(n− α)
∣∣∣an+1

2

∣∣∣ 5 2(1− α) (2.18.19)

for some real α (0 5 α < 1), then f(z) ∈ Q∗(α). The result is sharp for f(z) given by

f(z) = z +
∞∑
n=2

2(1− α)ε

n(n2 − 1)(n− α)
z
n+1
2 (2.18.20)

with |ε| = 1.

Letting α = 0 in Theorem 2.18.3, we have

Corollary 2.18.4. ([37]) If f(z) ∈ A∗ satisfies

∞∑
n=2

n(n+ 1)
∣∣∣an+1

2

∣∣∣ 5 2, (2.18.21)

then f(z) ∈ Q∗(0). The result is sharp for f(z) given by

f(z) = z +
∞∑
n=2

2ε

n2(n2 − 1)
z
n+1
2 (|ε| = 1). (2.18.22)

To discuss next properties for f(z) ∈ Q∗(α), we have to recall here the following lemma

which is called as Carathéodory theorem (see [48], [60], [73]).

Lemma 2.18.5.Let a function p(z) given by

p(z) = 1 +
∞∑
n=1

cnz
n (2.18.23)

be analytic in U and Rep(z) > 0 (z ∈ U). Then

|cn| 5 2 (n = 1, 2, 3, · · · ). (2.18.24)

The equality holds true for

p(z) =
1 + z

1− z
= 1 + 2

∞∑
n=1

zn. (2.18.25)

Applying Lemma 2.18.5, we derive
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Theorem 2.18.6. ([37])If f(z) ∈ P∗(α), then

∣∣∣an+1
2

∣∣∣ 5 1

(n− 1)!

n∏
j=2

(j − 2α) (2.18.26)

for n = 2, 3, 4, · · · . The equality holds true for

f(z) =
z

(1−
√
z)2(1−α)

. (2.18.27)

Proof. For f(z) ∈ P∗(α), we define a function p(z) by

p(z) =
1

1− α

(
2
zf ′(z)

f(z)
− (1 + α)

)
(z ∈ U) (2.18.28)

with

p(z) = 1 +

∞∑
n=1

pn
2
z
n
2 (z ∈ U), (2.18.29)

where we consider the principal value for
√
z.

It follows that

2zf ′(z) = {(1− α)p(z) + (1 + α)} f(z). (2.18.30)

This gives us that

∞∑
n=2

(n+ 1)an+1
2
z
n+1
2 =

(
2a 3

2
+ (1− α)p 1

2

)
z

3
2 +

(
2a2 + (1− α)p 1

2
a 3

2
+ (1− α)p1

)
z2 (2.18.31)

+
(

2a 5
2

+ (1− α)p 1
2
a2 + (1− α)p1a 3

2
+ (1− α)p 3

2

)
z

5
2 + · · ·

+
(

2an+1
2

+ (1− α)p 1
2
an

2
+ (1− α)p1an−1

2
+ · · ·+ (1− α)pn−2

2
a 3

2
+ (1− α)pn−1

2

)
z
n+1
2 + · · · .

Therefore, we obtain that

(n− 1)an+1
2

= (1− α)
(
pn−1

2
+ pn−2

2
a 3

2
+ pn−3

2
a2 + · · ·+ p1an−1

2
+ p 1

2
an

2

)
, n ≥ 2, (2.18.32)

where a1 = 1. From the definition for p(z), we see that p(z) is analytic in U and p(0) = 1.

Furthermore, noting that Rep(z) > 0 (z ∈ U), Lemma 2.18.5 gives us that∣∣∣pn
2

∣∣∣ 5 2 (n = 1, 2, 3, · · · ). (2.18.33)

Taking n = 2 in (2.18.32), we see that∣∣∣a 3
2

∣∣∣ 5 (1− α)
∣∣∣p 1

2

∣∣∣ 5 2− 2α. (2.18.34)
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If we take n = 3 in (2.18.32), then we have that

|a2| 5
1− α

2

(∣∣∣p 1
2

∣∣∣ ∣∣∣a 3
2

∣∣∣+ |p1|
)
5 (1− α)(3− 2α) =

1

2
(2− 2α)(3− 2α). (2.18.35)

Further, letting n = 4 in (2.18.33), we obtain that∣∣∣a 5
2

∣∣∣ 5 1− α
3

(∣∣∣p 1
2

∣∣∣ |a2|+ |p1|
∣∣∣a 3

2

∣∣∣+
∣∣∣p 3

2

∣∣∣) (2.18.36)

5
2

3
(1− α)(2− α)(3− 2α) =

1

6
(2− 2α)(3− 2α)(4− 2α).

In view of the above, we assume that

∣∣∣an+1
2

∣∣∣ 5 1

(n− 1)!

n∏
j=2

(j − 2α) (2.18.37)

for j = 2, 3, 4, · · · , n. Then, we see that∣∣∣an+2
2

∣∣∣ ≤ 2(1− α)

n

(
1 +

∣∣∣a 3
2

∣∣∣+ |a2|+
∣∣∣a 5

2

∣∣∣+ · · ·+
∣∣∣an

2

∣∣∣+
∣∣∣an+1

2

∣∣∣) (2.18.38)

5
1

n!

n+1∏
j=2

(j − 2α).

Thus, applying the mathematical induction, we complete the proof of the theorem.

Theorem 2.18.7. ([37])If f(z) ∈ Q∗(α), then

∣∣∣an+1
2

∣∣∣ 5 1

n!

n∏
j=2

(j − 2α) (2.18.39)

for n = 2, 3, 4, · · · . The equality holds true for f(z) satisfying

f ′(z) =
1

(1−
√
z)2(1−α)

. (2.18.40)

Further, we consider some distortion inequalities for f(z) in P∗(α) and Q∗(α).

Theorem 2.18.8. ([37])If f(z) ∈ P∗(α), then

|z|
(1 +

√
|z|)2(1−α)

5 |f(z)| 5 |z|
(1−

√
|z|)2(1−α)

(z ∈ U). (2.18.41)

The equalities in (2.18.41) are attended for

f(z) =
z

(1−
√
z)2(1−α)

. (2.18.42)
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Proof. We note that there exists a function w(z) which is analytic in U with w(0) = 0 and

|w(z)| < 1 (z ∈ U). This function w(z) also satisfies

f(z) =
w(z)

(1−
√
w(z))2(1−α)

(z ∈ U). (2.18.43)

If we write that w(z) = |w(z)|eiθ, then f(z) gives us that

|f(z)| = |w(z)|(
1−

√
|w(z)|ei

θ
2

)2(1−α)
(2.18.44)

=
|w(z)|{(

1−
√
|w(z)|cos θ2

)2
+ |w(z)|sin2 θ

2

}1−α

=
|w(z)|(

1 + |w(z)| − 2
√
|w(z)|cos θ2

)1−α .

Applying the Schwarz lemma for w(z), we say that |w(z)| 5 |z| (z ∈ U). Therefore, we obtain

that
|z|

(1 +
√
|z|)2(1−α)

5 |f(z)| 5 |z|
(1−

√
|z|)2(1−α)

(2.18.45)

for z ∈ U. This completes the proof of the theorem.

Letting α = 0 in Theorem 2.18.8, we have

Corollary 2.18.9. ([37])If f(z) ∈ P∗(0), then

|z|
(1 +

√
|z|)2

5 |f(z)| 5 |z|
(1−

√
|z|)2

(z ∈ U). (2.18.46)

The equalities in (2.18.46) are attended for

f(z) =
z

(1−
√
z)2

. (2.18.47)

Further, letting |z| → 1 in Theorem 2.18.8, we see

Corollary 2.18.10. ([37])If f(z) ∈ P∗(α), then

|f(z)| =
(

1

4

)1−α
. (2.18.48)

The equality in (2.18.48) is attended for f(z) given by (2.18.42) with z = ei2π.
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Noting that f(z) ∈ Q∗(α) if and only if zf ′(z) ∈ P∗(α), we also have

Theorem 2.18.11. ([37])If f(z) ∈ Q∗(α), then

1

(1 +
√
|z|)2(1−α)

5 |f ′(z)| 5 1

(1−
√
|z|)2(1−α)

(z ∈ U). (2.18.49)

The equalities in (2.18.49) are attended for

f(z) =

∫ z

0

1

(1−
√
t)2(1−α)

dt. (2.18.50)

Corollary 2.18.12. ([37])If f(z) ∈ Q∗(0), then

1

(1 +
√
|z|)2

5 |f ′(z)| 5 1

(1−
√
|z|)2

(z ∈ U). (2.18.51)

The equalities in (2.18.51) are attended for

f(z) =

∫ z

0

1

(1−
√
t)2
dt. (2.18.52)

Corollary 2.18.13. ([37])If f(z) ∈ Q∗(α), then

|f ′(z)| =
(

1

4

)1−α
. (2.18.53)

The equality in (2.18.53) is attended for f(z) given by (2.18.50) with z = ei2π.
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Chapter 3

Further research

3.1 Research directions

In this section, we briefly outline some of the research directions that may characterize our

future work, more details being given in the next two sections where we present two of our

current research projects.

Motivated by the recent results in the field of geometric function theory and willing to extend

our previous work, we have in view three general research directions, namely:

- study of new geometric properties for the operators considered in this thesis with respect

to their univalence (research direction A),

- construction of new integral operators that cover the already known operators as particular

cases (research direction B),

- construction of the classes of analytic functions having interesting geometric properties

(research directions C).

In what follows, all three of them are detailed by considering possible problems to focuse on

and by giving some examples of particular works together with some hints on the approaching

methods.

• Research direction A. We aim to extend the results that we have already obtained for

the integral operators J1 - J8, most of them on univalence (see Chapter 2, where various univa-

lence conditions were obtained), by investigating other properties of the operators, as convexity

and starlikeness for example. In order to approach the study of these operators with respect

to other properties, we will consider some particular classes of analytic functions. Within this

research direction we have in mind to investigate the following:
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Problem 1. One of the issue will be to find what conditions are neccessary to preserve the

starlikeness. We will have two possible methods to approach this problem, one based on the

analytic characterization of the starlikeness and the other, on differential subordinations.

Example 3.1.1. Let’s consider the operators:

J2(z) =

β z∫
0

uβ−1

(
f1 (u)

u

)γ1
· ... ·

(
fn (u)

u

)γn
du

 1
β

(3.1.1)

J4(z) =

β
z∫

0

uβ−1 ·
[
f ′1(u)

]γ1 · ... · [f ′n(u)
]γn du


1/β

. (3.1.2)

We can investigate some conditions for starlikeness, besides the univalence conditions wich

we have already obtained for these operators (see for example, Section 2.15). More precisely,

we can use the following Mocanu starlikeness condition, in the same manner as we used the

Kudriasov univalence condition (see Section 2.13), and see what other suplimentary conditions

are necessary for starlikeness:

∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤M, z ∈ U,M ∼= 2, 83. (3.1.3)

Problem 2. Another problem that we are interested to study is to find the convexity order

for integral operators.

Example 3.1.2. Let’s consider the operator:

J1(z) =

z∫
0

(
f1 (t)

t

)α1

· ... ·
(
fn (t)

t

)αn
dt (3.1.4)

on the classes of uniformly analytic functions,

β − UST0(p, q, α) =

=

{
f ∈ T0(p) : Re

{
zf (1+q)(z)

f (q)(z)

}
≥ β

∣∣∣∣∣
{
zf (1+q)(z)

f (q)(z)

}
− 1

∣∣∣∣∣+ α

}
, (3.1.5)

(z ∈ U ; 0 ≤ α < p− q; p ∈ N ; p > q; q ∈ N0 = N ∪ {0}, β ≥ 0
)
,

β − UCV0(p, q, α) =
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=

{
f ∈ T0(p) : Re

{
1 +

zf (2+q)(z)

f (1+q)(z)

}
≥ β

∣∣∣∣∣
{
zf (2+q)(z)

f (1+q)(z)

}∣∣∣∣∣+ α

}
, (3.1.6)

(z ∈ U ; 0 ≤ α < p− q; p ∈ N ; p > q; q ∈ N0 = N ∪ {0}, β ≥ 0
)
.

The approach will be based on a differential operator which will be applied on the functions

that compose the operator, such that the new operator will be well defined on the class of

functions of the form:

f(z) = ap · zp −
∞∑
n=1

ap+nz
p+n, (ap+n ≥ 0; p ∈ N = {1, 2, ...} , ap > 0). (3.1.7)

Further, we will use the analytic characterization of the classes and of the convexity of a

given order.

Problem 3. Preserving of other geometric properties by our integral operators will be an-

other research goal.

Example 3.1.3. We consider the operator (see Section 2.12, where univalence was already

studied),

J8(z) =

δ ∫ z

0
uδ−1

n∏
j=1

(
fj(u)

u

)αj
(gj(u))βj du

 1
δ

, (3.1.8)

where δ, αj , βj are complex numbers, δ 6= 0, fj ∈ A, gj ∈ P, j = 1, n.

We will study the operator on various classes of analytic functions as for example, the class

SH (β), β > 0, introduced by Stankiewicz-Wisniowska, [98] (see Section 2.4, where other op-

erator was studied on this class), the working tool being the analytic characterization for the

related class:

SH (β) =

{
f ∈ S :

∣∣∣∣zf ′ (z)f (z)
− 2β

(√
2− 1

)∣∣∣∣ < Re

{√
2
zf ′ (z)

f (z)

}
+ 2β

(√
2− 1

)
, z ∈ U

}
.

(3.1.9)

• Research direction B. Construction of new operators that can cover the already known

operators as particular cases:

Regarding this research direction, in order to give consistency to our results, we have to

consider the next three aspects for each new introduced integral operator:
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3.1. Research directions

- checking the existence of the operator (if it is well defined),

- finding other motivation of the operators, besides their generality, taking into account pos-

sible geometric properties and some particular interesting examples,

- investigating geometric properties of the operators.

Example 3.1.4. We currently work on the new integral operator Nα,β(f, g), with α =

(α1, α2, ...αn) si (f, g) = (f1, f2, ...fn, g1, g2, ...gn), αi, real pozitive numbers, β complex numbers,

Reβ > 0, fi, gi ∈ A, i = 1, n, (fi ∗ gi) (z) = z +
∑∞

k=2 ak,ibk,iz
k, Hadamard product (ak,i, bk,i,

coefficients of the functions fi, gi) :

Nα,β(f, g) (z) =[∫ z

0
βtβ−1exp

(∫ t

0

n∏
i=1

(
(fi ∗ gi) (u)

u

)αi
du

)
dt

] 1
β

(3.1.10)

For n = 1, α1 = 1, g1 = z
1−z , we find the operator introduced by Attiya ([6]):

Fβ(f) (z) =

[∫ z

0
βtβ−1exp

(∫ t

0

(
f(u)

u

)
du

)
dt

] 1
β

(3.1.11)

For

n∏
i=1

(
(fi ∗ gi) (z)

z

)αi
=

n∑
i=1

αi

(
(fi ∗ gi)′ (z)
(fi ∗ gi) (z)

− 1

z

)
, (3.1.12)

we get the operator given by Frasin ([46]),

Iα,β(f, g) (z) =

[∫ z

0
βtβ−1

n∏
i=1

(
(fi ∗ gi) (t)

t

)αi
dt

] 1
β

. (3.1.13)

• Research problem C. Construction of new classes of analytic functions:

For each of the new introduced classes, we have in view to study at least the following lines:

- finding examples of functions that proves the nontriviality,

- study of Hadamard product on those classes (or some modified version of Hadamard prod-

uct),

- characterization of the classes by finding coefficients estimates,
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3.2. Univalence of the solution of the inverse boundary problem

- finding class preserving properties for some integral operators.

Example 3.1.5. (see Section 3.3) We currently work on some new classes defined by the

conditions (α > 1):

0 < Re

(
zf ′(z)

f(z)

)
< α (z ∈ U) (3.1.14)

respectively,

0 < Re

(
1 +

zf ′′(z)

f ′(z)

)
< α (z ∈ U). (3.1.15)

Other lines of work that we aim to follow are related to:

- extending of other type of univalence criteria of a function to integral operator, in the same

manner as we worked with Pascu criterion (see Chapter 2),

- study of some integro-differential operators,

- the analysis of already obtained results through the extremal function issue,

- finding some applications for the theoretical results (see the detailed result from the Section

3.2)

- using of specialized software to outline the geometric properties of some integral operators

mapping.

3.2 Univalence of the solution of the inverse bound-

ary problem

In this project, together with V. Pescar, we aim to obtain some application of integral op-

erators. First, we study the univalence of a particular integral operator. Then the univalence

criterion is extended for a more general integral operator and also finally, derived for a particu-

lar integral operator which can be viewed as a solution of the inverse boundary problem. This

project is part of a more general one, started together with D. Breaz and V. Pescar, based on

the goal of finding of some applications for the univalence of the integral operators in the field

of fluid mechanics.

The following integral operators are studied:
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3.2. Univalence of the solution of the inverse boundary problem

Fβ(z) =

β
z∫

0

uβ−1f ′(u)du


1
β

, (3.2.1)

Tn(z) =

β
z∫

0

uβ−1
(
f ′1(u)

)γ1 ... (f ′n(u)
)γn du


1
β

, (3.2.2)

β, γj complex numbers, β 6= 0, j = 1, n, fj ∈ A, j = 1, n, n positive integer number.

Among the applications of the geometric function theory there is one related to fluid mechan-

ics where we deal with the inverse boundary problem (see [47]). The solution of such problem

can be defined as an integral operator having the form,

p(z) =

z∫
0

eh(u)du, (3.2.3)

where h is a regular known function in U . In fluid mechanics it is known that the solution

of the inverse boundary problem has to be univalent.

Remark 3.2.1. i) The integral operator Fβ was introduced by N.N.Pascu in the paper [77].

ii) Besides the classical integral operators, in the last decade, some general integral operators,

defined as a family of integral operators, using more than one analytic function in their defi-

nition, have been studied (see for example, the works [38], [57], [85], [81], [97]). The general

integral operator Tn is an example of such operator, considered as an operator of Pfaltzgraff

type (see [88]). This operator was introduced by D.Breaz and N.Breaz in the paper [10] and has

been studied with respect to its univalence, in many other papers (see for example [80]-[81]).

iii) If we consider n = 1 and γ1 = 1 in (3.2.2), we can see that Tn is viewed as an extension of

the operator Fβ.

iv) The solution of the inverse boundary problem can be viewed as particular case of the oper-

ator Fβ. For example, we can chose β = 1 and set the function f such that f ′ (u) = eh(u). This

connection between the solution of the inverse boundary problem and the integral operator Fβ

will be exploited in this paper.

The aim here is to obtain new sufficient conditions for the univalence of the integral operator

Fβ, based on which we can obtain further, univalence of the more general integral operator Tn,

but also the univalence of the solution of the inverse boundary problem, the integral operator p.

With the following theorem we achieve univalence criterion for the integral operators Fβ and

Tn :

Theorem 3.2.2.Let α be a complex number, Reα > 0 and the function f , f ∈ A, f(z) =

z +
∞∑
k=2

akz
k. If
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3.2. Univalence of the solution of the inverse boundary problem

∣∣∣∣f ′′ (z)f ′ (z)

∣∣∣∣ < M, (3.2.4)

for all z ∈ U , where the positive constant M satisfies the inequality,

M ≤ 1

max|z|<1

[
1−|z|2Reα

Reα |z| |z|+
2|a2|
M

1+
2|a2||z|
M

] , (3.2.5)

then for all β complex number, with Reβ ≥ Reα, the integral operator Fβ defined by (3.2.1)

is in the class S.

Proof. Let’s consider the function

g (z) =
1

M

f ′′ (z)

f ′ (z)
. (3.2.6)

From (3.2.4) and (3.2.6), we have |g (z)| < 1, for all z ∈ U . The function g is regular in U

and g (0) = 2a2
M . From Nehari Remark, we obtain

∣∣∣∣ 1

M

f ′′ (z)

f ′ (z)

∣∣∣∣ ≤ |z|+ 2|a2|
M

1 + 2|a2||z|
M

, (3.2.7)

for all z ∈ U and hence, we have

1− |z|2Reα

Reα

∣∣∣∣z f ′′ (z)f ′ (z)

∣∣∣∣ ≤M 1− |z|2Reα

Reα
|z|
|z|+ 2|a2|

M

1 + 2|a2||z|
M

, (3.2.8)

for all z ∈ U .

Let be the function H : [0, 1)→ R, H (x) = 1−x2Reα

Reα x
x+

2|a2|
M

1+
2|a2|x
M

. Since H(1
2) > 0, it comes that

maxx∈[0,1)H (x) > 0.

Hence, further, from (3.2.8), we get

1− |z|2Reα

Reα

∣∣∣∣z f ′′ (z)f ′ (z)

∣∣∣∣ ≤M ·max|z|<1

[
1− |z|2Reα

Reα
|z|
|z|+ 2|a2|

M

1 + 2|a2||z|
M

]
. (3.2.9)

Now, using (3.2.5) and (3.2.9), we have

1− |z|2Reα

Reα

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1, (3.2.10)

for all z ∈ U .

Finally, from (3.2.10) and N.N. Pascu univalence criterion, it results that Fβ ∈ S.

Remark 3.2.3. There is a connection between the coefficient a2 from the analytic form of

the function f and the coefficient A2 from the analytic form of the operator Fβ. The function

Fβ (z) is regular in U and we have
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3.2. Univalence of the solution of the inverse boundary problem

Fβ(z) =

β z∫
0

uβ−1f ′(u)du

 1
β

= z +A2z
2 + ... (3.2.11)

From (3.2.11) we get F β−1
β (z)F ′β (z) = zβ−1f ′ (z) and hence

f ′ (z) =

(
Fβ (z)

z

)β−1

F ′β (z) , (3.2.12)

for all z ∈ U .

From (3.2.12), for β fixed, Reα > 0, Reβ ≥ Reα, we obtain the relation,

a2 =
β + 1

2
A2. (3.2.13)

From the Theorem 3.2.2, we can derive different univalence conditions, taking some partic-

ular cases of the parameters involved.

Corollary 3.2.4.Let be the function f , f ∈ A, f(z) = z+
∞∑
k=3

akz
k and α a complex number,

Reα > 0. If ∣∣∣∣f ′′ (z)f ′ (z)

∣∣∣∣ < (Reα+ 1)
Reα+1
Reα , (3.2.14)

for all z ∈ U , then for all β complex number, with Reβ ≥ Reα, the integral operator Fβ

defined by (3.2.1) is in the class S.

Proof. We apply Theorem 3.2.2, taking a positive constant M , having the form,

M = (Reα+ 1)
Reα+1
Reα . (3.2.15)

Indeed, since

max|z|<1

[
1− |z|2Reα

Reα
|z|2
]

=
1

(Reα+ 1)
Reα+1
Reα

, (3.2.16)

the conditions (3.2.4) and (3.2.5) from the Theorem 3.2.2 are satisfied (we are in the case

a2 = 0).

Corollary 3.2.5.Let be the function f , f ∈ A, f(z) = z+
∞∑
k=2

akz
k and α a complex number,

0 < Reα ≤ 1. If ∣∣∣∣f ′′ (z)f ′ (z)

∣∣∣∣ < M, (3.2.17)

for all z ∈ U , where the positive constant M satisfies the inequality
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3.2. Univalence of the solution of the inverse boundary problem

M ≤ 1

max|z|<1

[
1−|z|2Reα

Reα |z| |z|+
2|a2|
M

1+
2|a2||z|
M

] , (3.2.18)

then the function f is univalent.

Proof. We apply Theorem 3.2.2 for β = 1.

Corollary 3.2.6.Let α be a complex number, 0 < Reα ≤ 1 and the function f , f ∈ A,

having the form, f(z) = z +
∞∑
k=3

akz
k. If∣∣∣∣f ′′ (z)f ′ (z)

∣∣∣∣ < (Reα+ 1)
Reα+1
Reα , (3.2.19)

for all z ∈ U , then the function f is univalent.

Proof. This result is a combination of the last two corollaries and derives from the Theorem

3.2.2, for the particular case when a2 = 0 (M taking the form (3.2.15)) and β = 1.

Theorem 3.2.7.Let α, γj (j = 1, n) be complex numbers, Reα > 0 and the functions fj,

fj ∈ A, fj(z) = z +
∞∑
k=2

ajkz
k, j = 1, n, n positive integer number. If

|γ1|+ |γ2|+ ...+ |γn| ≤ 1, (3.2.20)

∣∣∣∣∣f ′′j (z)

f ′j (z)

∣∣∣∣∣ < Mj , (3.2.21)

for all z ∈ U , j = 1, n, where the positive constants Mj satisfy the inequality,

Mj ≤
1

max|z|<1

[
1−|z|2Reα

Reα |z|
|z|+ 2|φ|

max
j=1,n

Mj

1+
2|φ||z|

max
j=1,n

Mj

] , j = 1, n, (3.2.22)

with φ = γ1a
1
2 + γ2a

2
2 + ... + γna

n
2 , then for all β complex number, with Reβ ≥ Reα, the

integral operator Tn defined by (3.2.1) is in the class S.

Proof. We consider the regular function

f (z) =

z∫
0

(
f ′1(u)

)γ1 ... (f ′n(u)
)γn du. (3.2.23)

It can be easily checked that f(z) = z + a2z
2 + ... with

a2 = φ = γ1a
1
2 + γ2a

2
2 + ...+ γna

n
2 (3.2.24)

and
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3.2. Univalence of the solution of the inverse boundary problem

f ′′ (z)

f ′ (z)
= γ1

f ′′1 (z)

f ′1 (z)
+ γ2

f ′′2 (z)

f ′2 (z)
+ ...γn

f ′′n (z)

f ′n (z)
. (3.2.25)

Now we apply the Theorem 3.2.2 for the function f from (3.2.23), taking M = maxj=1,nMj

which is a positive constant. From (3.2.20), (3.2.21) and (3.2.25) we get that f satisfies the con-

dition (3.2.4). Moreover, M satisfies the condition (3.2.5) if we take into account the formula

(3.2.24). Hence, applying the Theorem 3.2.2 and using (3.2.23), the univalence result for the

integral operator Tn holds.

Corollary 3.2.8.Let be the function fj,fj ∈ A, fj(z) = z +
∞∑
k=3

ajkz
k, j = 1, n and α, γj

(j = 1, n) complex numbers, Reα > 0. If

|γ1|+ |γ2|+ ...+ |γn| ≤ 1, (3.2.26)

∣∣∣∣∣f ′′j (z)

f ′j (z)

∣∣∣∣∣ < (Reα+ 1)
Reα+1
Reα , (3.2.27)

for all z ∈ U , j = 1, n, then for all β complex number, with Reβ ≥ Reα, the integral operator

Tn defined by (3.2.1) is in the class S.

Proof. In the Theorem 3.2.7, we take aj2 = 0, j = 1, n and follow the steps from the proof

of the Corollary 3.2.4.

In what follows we work to obtain the univalence of the solution of the inverse boundary

problem.

Corollary 3.2.9.Let α be a complex number, 0 < Reα ≤ 1, the function h ∈ A and the

function

p(z) =

z∫
0

eh(u)du = z +A2z
2 + ....

If

∣∣h′ (z)∣∣ < M (3.2.28)

for all z ∈ U , where the positive constant M satisfies the inequality

M ≤ 1

max|z|<1

[
1−|z|2Reα

Reα |z| |z|+
2|A2|
M

1+
2|A2||z|
M

] , (3.2.29)
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3.3. The study of new classes of analytic functions, using differential subordinations

then p ∈ S.

Proof. We apply Theorem 3.2.2, for β = 1. Moreover, in Theorem 3.2.2, we chose the

function f such that f ′ (z) = eh(z) which is a regular function. For the analytic form of this

function we use the notation, f (z) = z+ a2z
2 + ... . Hence, we obtain that F1 (z) = p(z) = f(z)

and further a2 = A2. Moreover, it comes that

f ′′ (z)

f ′ (z)
= h′ (z) . (3.2.30)

Taking into account (3.2.30) and (3.2.28) we obtain that function f satisfies the condition

(3.2.4) from the Theorem 3.2.2. On the other hand, based on (3.2.29) and on the equality

a2 = A2, the condition (3.2.5) from the Theorem 3.2.2 is satisfied too, hence p(z) = F1 (z) is

univalent and the result is proved.

Corollary 3.2.10.Let α be a complex number, 0 < Reα ≤ 1, the function h ∈ A and the

function

p(z) =

z∫
0

eh(u)du = z +A3z
3 + ....

If

∣∣h′ (z)∣∣ < (Reα+ 1)
Reα+1
Reα (3.2.31)

for all z ∈ U , then p ∈ S.

Proof. Taking in Theorem 3.2.2, the function f as in the previous corollary and knowing

that a2 = A2 = 0 the result holds.

The last two corollaries give univalence conditions for the solution of the inverse boundary

problem.

3.3 The study of new classes of analytic functions,

using differential subordinations

Together with S. Owa, J. Nishiwaki and D. Breaz we introduced two subclasses of analytic

functions, respectively S∗n(α) and Kn(α). In this research project we aim to study some inter-

esting properties of the functions from these classes, using differential subordinations.
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3.3. The study of new classes of analytic functions, using differential subordinations

Here we will work in the framework of the class An , defined by the functions

f(z) = z +

∞∑
k=n

akz
k (n = 2, 3, 4, · · · ), (3.3.1)

analytic in the open unit disc U = {z ∈ C : |z| < 1}. As we know, if we consider a function

f(z) ∈ An which satisfies

Re

(
zf ′(z)

f(z)

)
> 0 (z ∈ U), (3.3.2)

then f(z) is starlike with respect to the origin in U. We denote by S∗n, the subclass of An
consisting of starlike functions in U. Also, we know that f(z) is convex in U, f(z) ∈ An, if

satisfies

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (z ∈ U) (3.3.3)

and this is equivalent to zf ′(z) ∈ S∗n. We denote by Kn the subclass of An consisting of all

convex functions in U.

Let us consider a function f(z) given by

f(z) = z +
1

n
zn (n = 2, 3, 4, · · · ). (3.3.4)

This function f(z) satisfies that

Re

(
zf ′(z)

f(z)

)
= n− Re

(
n(n− 1)

zn−1 + n

)
= n− n(n− 1)(n+ rn−1 cos(n− 1)θ)

n2 + r2(n−1) + 2nrn−1 cos(n− 1)θ
(3.3.5)

for z = reiθ ∈ U. Therefore, we see that

0 <
n(1− rn−1)

n− rn−1
< Re

(
zf ′(z)

f(z)

)
<
n(1 + rn−1)

n+ rn−1
<

2n

n+ 1
(z ∈ U). (3.3.6)

Further, if we consider a function f(z) given by

f(z) = z +
1

n2
zn (n = 2, 3, 4, · · · ), (3.3.7)

then we have

0 < Re

(
1 +

zf ′′(z)

f ′(z)

)
<

2n

n+ 1
(z ∈ U). (3.3.8)

Therefore, f(z) given by (3.3.4) is in the class S∗n and f(z) given by (3.3.7) is in the class Kn.

In view of the above, we say that f(z) ∈ S∗n(α) if f(z) ∈ An satisfies

0 < Re

(
zf ′(z)

f(z)

)
< α (z ∈ U) (3.3.9)
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for some real α > 1, and that f(z) ∈ Kn(α) if f(z) ∈ An satisfies

0 < Re

(
1 +

zf ′′(z)

f ′(z)

)
< α (z ∈ U) (3.3.10)

for some real α > 1. From the above definitions we say that f(z) ∈ S∗n
(

2n

n+ 1

)
for f(z)

given by (3.3.4) and that f(z) ∈ Kn
(

2n

n+ 1

)
for f(z) given by (3.3.7). Also, we know that

S∗n(α) ⊂ S∗n(β) and Kn(α) ⊂ Kn(β) for 1 < α < β. It follows that if f(z) is given by (3.3.4),

then f(z) ∈ S∗n(2) for any n = 2, 3, 4, · · · , and that if f(z) is given by (3.3.7), then f(z) ∈ Kn(2)

for any n = 2, 3, 4, · · · .

As we know, if p(z) is subordinated to q(z), p(z), q(z) analytic in U, written as p(z) ≺
q(z), then there exists a function w(z) analytic in U, with w(0) = 0 and |w(z)| < 1 (z ∈ U), and

such that p(z) = q(w(z)). It is well known that if q(z) is univalent in U, then the subordination

p(z) ≺ q(z) is equivalent to p(0) = q(0) and p(U) ⊂ q(U). Many results based on subordina-

tions concerning univalent, starlike and convex functions can be found in various works (see for

example, Miller and Mocanu ([62]), Obradović and Owa ([69]) and Owa and Srivastava ([74])).

Motivated by these works, we aim to use subordinations in order to study the properties of our

classes, as follows:

Theorem 3.3.1. If f(z) ∈ An is given by

f(z) = z +mzn (n = 2, 3, 4, · · · ) (3.3.11)

for some real 0 < m < 1, then

1−mnrn−1

1−mrn−1
5 Re

(
zf ′(z)

f(z)

)
5

1 +mnrn−1

1 +mrn−1
(3.3.12)

for z = reiθ ∈ U and

1−mn
1−m

5 Re

(
zf ′(z)

f(z)

)
5

1 +mn

1 +m
(z ∈ U). (3.3.13)

Proof. It follows from (3.3.11)

zf ′(z)

f(z)
= n− n− 1

1 +mzn−1
. (3.3.14)

Letting z = reiθ ∈ U, we have that

Re

(
zf ′(z)

f(z)

)
= n− (n− 1)(1 +mrn−1 cos(n− 1)θ)

1 +m2r2(n−1) + 2mrn−1 cos(n− 1)θ
. (3.3.15)
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If we write

g(t) =
1 +mrn−1t

1 +m2r2(n−1) + 2mrn−1t
(t = cos(n− 1)θ), (3.3.16)

then

g′(t) =
mrn−1(m2r2(n−1) − 1)

(1 +m2r2(n−1) + 2mrn−1t)2
< 0. (3.3.17)

This shows us the inequality (3.3.12). Further, letting r → 1− in (3.3.12), we obtain (3.3.13).

From Theorem 3.3.1, we easily say that

Theorem 3.3.2. If f(z) ∈ An is given by

f(z) = z +
m

n
zn (n = 2, 3, 4, · · · ) (3.3.18)

for some real m (0 < m < 1), then

1−mnrn−1

1−mrn−1
5 Re

(
1 +

zf ′′(z)

f ′(z)

)
5

1 +mnrn−1

1 +mrn−1
(3.3.19)

for z = reiθ ∈ U and

1−mn
1−m

5 Re

(
1 +

zf ′′(z)

f ′(z)

)
5

1 +mn

1 +m
(z ∈ U). (3.3.20)

Remark 3.3.3. Since 1 −mn = 0 for 0 < m 5
1

n
, f(z) given by (3.3.11) belongs to the

class S∗n
(

1 +mn

1 +m

)
for 0 < m 5

1

n
and f(z) given by (3.3.18) belongs to the class Kn

(
1 +mn

1 +m

)
for 0 < m 5

1

n
.

To discuss our next result, we have to recall here the following lemma due to Miller and

Mocanu ([63]) (also due to Jack [49]).

Lemma 3.3.4.Let w(z) be analytic in U with w(0) = 0. Then, if |w(z)| attains its maximum

value on the circle |z| = r < 1 at a point z0 ∈ U, then we have

z0w
′(z0) = mw(z0) (3.3.21)

and

Re

(
1 +

z0w
′′(z0)

w′(z0)

)
= m, (3.3.22)

where m = 1.

With the help of Lemma 3.3.4, we derive
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Theorem 3.3.5. If f(z) ∈ An satisfies

zf ′(z)

f(z)
≺ α(1 + zn−1)

α+ (2− α)zn−1
(z ∈ U) (3.3.23)

for some real α > 1, then ∣∣∣∣zf ′(z)f(z)
− α

2

∣∣∣∣ < α

2
(z ∈ U), (3.3.24)

thus f(z) ∈ S∗n (α).

Proof. It follows from (3.3.23) that there exists an analytic function w(z) in U with w(0) = 0,

|w(z)| < 1 (z ∈ U), and

zf ′(z)

f(z)
=

α(1 + w(z)n−1)

α+ (2− α)w(z)n−1
(z ∈ U). (3.3.25)

If we write that

F (z) =
zf ′(z)

f(z)
, (3.3.26)

then we obtain that

|w(z)n−1| =
∣∣∣∣ α(F (z)− 1)

α− (2− α)F (z)

∣∣∣∣ < 1 (z ∈ U). (3.3.27)

Since (3.3.27) gives us that

2|F (z)|2 − α(F (z) + F (z)) < 0 (z ∈ U), (3.3.28)

we obtain (3.3.24). Noting that (3.3.24) implies that

0 < Re

(
zf ′(z)

f(z)

)
< α (z ∈ U), (3.3.29)

we say that f(z) ∈ S∗n(α).

For the class Kn(α), we have

Theorem 3.3.6. If f(z) ∈ An satisfies

1 +
zf ′′(z)

f ′(z)
≺ α(1 + zn−1)

α+ (2− α)zn−1
(z ∈ U) (3.3.30)

for some real α > 1, then ∣∣∣∣1 +
zf ′′(z)

f ′(z)
− α

2

∣∣∣∣ < α

2
(z ∈ U), (3.3.31)

thus f(z) ∈ Kn(α).
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Next, we consider

Theorem 3.3.7. If f(z) ∈ An satisfies

Re

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
<

(n− 1)

2(α− 1)
(z ∈ U) (3.3.32)

for some real 1 < α 5 2 and

Re

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)
<

(n− 1)(α− 1)

2
(z ∈ U) (3.3.33)

for some real α > 2, then ∣∣∣∣zf ′(z)f(z)
− α

2

∣∣∣∣ < α

2
(z ∈ U), (3.3.34)

therefore, f(z) ∈ S∗n(α).

Proof. Let us consider a function w(z) which is analytic in U, w(0) = 0, and given by

zf ′(z)

f(z)
=

α(1 + w(z)n−1)

α+ (2− α)w(z)n−1
(z ∈ U) (3.3.35)

for f(z) satisfying (3.3.32) or (3.3.33). It follows from (3.3.35) that

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
= (n− 1)

zw′(z)

w(z)

{
w(z)n−1

1 + w(z)n−1
− (2− α)w(z)n−1

α+ (2− α)w(z)n−1

}
. (3.3.36)

Let us suppose that there exists a point z0 ∈ U such that

max
|z|≤|z0|

|w(z)| = |w(z0)| = 1. (3.3.37)

Then, Lemma 3.3.4 says that

z0w
′(z0) = mw(z0) (m = 1). (3.3.38)

Letting w(z0) = eiθ, we have (k > 1):

Re

(
1 +

z0f
′′(z0)

f ′(z0)
− z0f

′(z0)

f(z0)

)
= (n− 1)kRe

{
ei(n−1)θ

1 + ei(n−1)θ
− (2− α)ei(n−1)θ

α+ (2− α)ei(n−1)θ

}
(3.3.39)

= (n− 1)k

{
1

2
− (2− α)(2− α+ α cos(n− 1)θ)

α2 + (2− α)2 + 2α(2− α) cos(n− 1)θ

}
.

Let us define the function g(t) by

g(t) =
2− α+ αt

α2 + (2− α)2 + 2α(2− α)t
(t = cos(n− 1)θ). (3.3.40)
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Then

g′(t) =
4α(α− 1)

(α2 + (2− α)2 + 2α(2− α)t)2
> 0. (3.3.41)

Since g(t) is increasing for t = cos(n− 1)θ, (n fixed), we obtain

Re

(
1 +

z0f
′′(z0)

f ′(z0)
− z0f

′(z0)

f(z0)

)
=

(n− 1)k

2(α− 1)
=

n− 1

2(α− 1)
, (3.3.42)

for 1 < α 5 2 and

Re

(
1 +

z0f
′′(z0)

f ′(z0)
− z0f

′(z0)

f(z0)

)
=

(n− 1)(α− 1)k

2
=

(n− 1)(α− 1)

2
(3.3.43)

for α > 2. This contradicts the conditions (3.3.32) and (3.3.33). Therefore, we say that there

is no w(z) such that w(0) = 0 and |w(z0)| = 1 for z0 ∈ U. This means that |w(z)| < 1, for all

z ∈ U. From the above, we have

|w(z)n−1| =

∣∣∣∣∣∣∣∣
α

(
zf ′(z)

f(z)
− 1

)
α− (2− α)

zf ′(z)

f(z)

∣∣∣∣∣∣∣∣ < 1 (z ∈ U) (3.3.44)

and f(z) ∈ S∗n(α).

Further, we can derive some description of our classes, by giving coefficients estimates, as

follows:

Theorem 3.3.8. If f(z) ∈ An satisfies

∞∑
k=n

(|2k − α|+ α)|ak| 5 α− |2− α| (3.3.45)

for some real α > 1, then f(z) ∈ S∗n(α). The equality in (3.3.45) is attained for

f(z) = z +
∞∑
k=n

(α− |2− α|)nε
k(k + 1)(|2k − α|+ α)

zk (|ε| = 1). (3.3.46)

Proof. We know that if f(z) ∈ An satisfies∣∣∣∣zf ′(z)f(z)
− α

2

∣∣∣∣ < α

2
(z ∈ U) (3.3.47)

for α > 1, then f(z) ∈ S∗n(α). The inequality (3.3.47) is equivalent to

|2zf ′(z)− αf(z)| < α|f(z)|, (3.3.48)
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that is, ∣∣∣∣∣(2− α) +
∞∑
k=n

(2k − α)akz
k−1

∣∣∣∣∣ < α

∣∣∣∣∣1 +
∞∑
k=n

akz
k−1

∣∣∣∣∣ (3.3.49)

for z ∈ U. Therefore, if f(z) satisfies

|2− α|+
∞∑
k=n

|2k − α||ak| 5 α− α
∞∑
k=n

|ak|, (3.3.50)

then f(z) ∈ S∗n(α). The inequality (3.3.50) is equivalent to (3.3.45). Further, if we consider a

function f(z) given by (3.3.46), then we have

∞∑
k=n

(|2k − α|+ α) |ak| =
∞∑
k=n

(α− |2− α|)n
k(k + 1)

(3.3.51)

=

∞∑
k=n

(α− |2− α|)n
(

1

k
− 1

k + 1

)
= α− |2− α|.

This implies that f(z) given by (3.3.46) satisfies the equality in (3.3.45).

For the class Kn(α), we have

Theorem 3.3.9. If f(z) ∈ An satisfies

∞∑
k=n

k(|2k − α|+ α)|ak| 5 α− |2− α| (3.3.52)

for some real α > 1, then f(z) ∈ Kn(α). The equality in (3.3.52) is attained for f(z) given by

f(z) = z +

∞∑
k=n

(α− |2− α|)nε
k2(k + 1)(|2k − α|+ α)

zk (|ε| = 1). (3.3.53)
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