
   

 
 

 

 

 

HABILITATION THESIS 
 

 

 

 

Solutions for modeling and perception of 

dynamic 3D environments 
 

 

 

 

 

 

 

Assoc. Prof. Radu Gabriel DANESCU, PhD 

 

 

Faculty of Automation and Computer Science 

Technical University of Cluj-Napoca 

 

 

 

 

 

 

2014 

 

  



Radu Gabriel DANESCU 

 

2 

 

Habilitation Thesis

Table of contents 
 

a) ABSTRACT ..................................................................................................................... 4 

b) ACHIEVEMENTS AND DEVELOPMENT PLANS ........................................................ 7 

(b-i) Scientific, professional and academic achievements ...................................................... 7 

Articles constituting the habilitation thesis ............................................................................ 7 

Scientific, professional and academic experience of the candidate ......................................... 8 

1. Solutions for modeling and tracking freeform dynamic 3D environments ........................ 10 

1.1. The particle based occupancy grid ............................................................................ 10 

1.1.1. Introduction ....................................................................................................... 10 

1.1.2. Solution overview .............................................................................................. 11 

1.1.3. The world model ................................................................................................ 12 

1.1.4. Prediction .......................................................................................................... 13 

1.1.5. The measurement model .................................................................................... 14 

1.1.6. Particle weighting and resampling...................................................................... 18 

1.1.7. Particle system initialization .............................................................................. 21 

1.1.8. Individual object detection based on the particle occupancy grid ........................ 21 

1.1.9. Experimental results .......................................................................................... 24 

1.1.10. Conclusion ....................................................................................................... 28 

1.2. The particle based dynamic elevation map ................................................................ 29 

1.2.1. Introduction ....................................................................................................... 29 

1.2.2. Proposed world model: the particle-based dynamic elevation map ..................... 30 

1.2.3. Overview of the tracking algorithm .................................................................... 33 

1.2.4. Algorithm description ........................................................................................ 34 

1.2.5. Experimental results .......................................................................................... 40 

1.2.6. Comparison of World Modeling Techniques ...................................................... 47 

1.2.7. Conclusion ......................................................................................................... 48 

1.3. The gray level enhanced dynamic elevation map ...................................................... 48 

1.3.1. Introduction ....................................................................................................... 48 

1.3.2. The graylevel dynamic elevation map world model............................................ 49 

1.3.3. The measurement data ....................................................................................... 49 

1.3.4. Weighting the particles ...................................................................................... 50 

1.3.5. Experimental results .......................................................................................... 50 

1.3.6. Conclusion ......................................................................................................... 51 

2. Large baseline stereovision for space surveillance ........................................................... 52 

2.1. Large baseline stereovision system for surveillance of the MEO orbits and beyond .. 52 

2.1.1. Introduction – related work ................................................................................ 52 



Radu Gabriel DANESCU 

 

3 

 

Habilitation Thesis

2.1.2. Overview of the contributions in stereovision-based space surveillance ............. 55 

2.1.3. The sensorial systems ........................................................................................ 55 

2.1.4. System synchronization ..................................................................................... 56 

2.1.5. The coordinate system and the camera parameters ............................................. 57 

2.1.6. Calibration of the intrinsic camera parameters .................................................... 58 

2.1.7. The translation vectors ....................................................................................... 62 

2.1.8. Online calibration of the rotation matrices.......................................................... 63 

2.1.9. Detection of satellites from consecutive images ................................................. 66 

2.1.10. Detection of satellites from a stereo image pair ................................................ 67 

2.1.11. Establishing the stereo correspondence ............................................................ 71 

2.1.12. Computation of the 3D coordinates of the satellite ........................................... 73 

2.1.13. Experimental results......................................................................................... 74 

2.1.14. Conclusions ..................................................................................................... 77 

(b-ii) Scientific, professional and academic future development plans ................................. 78 

(b-iii) References ................................................................................................................ 81 

 
  



Radu Gabriel DANESCU 

 

4 

 

Habilitation Thesis

HABILITATION THESIS 

“Solutions for modeling and perception of dynamic 3D environments” 

a) ABSTRACT 
 

This thesis presents the scientific activity and achievements of the candidate after 

defending his PhD thesis at the Technical University of Cluj-Napoca on 12.12.2009, and 

receiving the PhD title confirmation by the Ministry of Education and Research’s Order No. 

3492, dated 23.03.2010. Before the PhD defense, the candidate’s research activity was 

focused on model-based object tracking for driving assistance applications, using the 

stereovision as measurement source. After finishing the PhD, the candidate remained active 

in the field of stereovision based perception, focusing on two major directions: designing 

solutions for modeling and tracking freeform dynamic 3D environments, and solutions for 

space surveillance based on large baseline stereovision. For both these directions, the results 

obtained were significant enough to warrant publication in several ISI journal articles and 

conference papers. 

1. Solutions for modeling and tracking freeform dynamic 3D environments: while 

many environments can be broken down into discrete pieces that can be modeled by 

geometrical entities such as boxes or parametrical curves, and the parameters of these 

geometrical entities can be tracked, sometimes the environment gets too complex, or the level 

of detail needed by the perceiving actor exceeds the assumed simplifications. For these 

reasons, alternative, freeform models such as occupancy grids and elevation maps can be 

employed. The candidate’s objectives were to create new freeform world models, based on 

the occupancy grid and elevation map paradigm, and use them for world tracking.  

The occupancy grid solutions found in the literature were mostly dedicated to static 

environments, the dynamic solutions being few and, from the candidate’s point of view, 

cumbersome and limited. The candidate’s proposed dynamic occupancy grid solution is 

based on dynamic particles that are the building blocks of the world, having position and 

speed, and which can migrate from one grid cell to another. In this way, a multi-modal 

probability density of the cell’s state, which includes occupancy and speed, is naturally 

represented. The particles are created and destroyed based on stereovision-derived 

measurement information, using a computationally efficient resampling algorithm. The 

particle population allows, at cell level, the estimation of occupancy and speed. The dynamic 

properties of the cells can be then used, if needed, for extraction of geometric objects, which 

will already have speed and orientation, even without model based tracking. 

The elevation map solutions available in the literature were exclusively dedicated to 

static environments. The solution proposed by the candidate, the particle-based dynamic 

elevation map, is able to successfully model and track complex dynamic environments, 

estimate the heights of the map cells, and the cell’s speed. The main challenges faced in 

designing the system were related to incorporating the 3D uncertainty of the stereovision into 

the particle weighting process as a multi-modal measurement model, and designing a particle 

motion mechanism that can handle quickly enough the dynamic elements of the scene. The 

novel world model, the particle-based dynamic elevation map, was extended even further 

with gray level information, so that the tracking process can benefit from the image aspect of 

the scene, besides the 3D information, and also for a more detailed description of the 

perceived environment. 

2. Large baseline stereovision for space surveillance: the Earth is surrounded by a 

huge number of orbiting objects, at various distances, travelling through space at various 

speeds. Some of these objects are useful, and some are simply leftovers from old space 

missions or from previously operating satellites. As the space is getting crowded, the 
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importance of keeping an eye on the objects orbiting the Earth grows. Multiple techniques for 

space surveillance exist, some relying on active ranging such as RADAR, but mostly based 

on optical devices, which merely receive the light reflected by the targets, and thus require 

significant less power to operate. The existing techniques for optical based space surveillance 

rely on image sequences produced by a single image source (a single telescope), and use the 

orbital constraints for determining the target’s range. The candidate saw an opportunity in the 

space surveillance field, the use of stereovision for automatic detection and ranging of the 

Earth orbiting objects. As the distance of these objects is in the range of thousands of 

kilometers, the baseline of the Earth-based stereoscope had to be in the order of kilometers or 

tens of kilometers. In order to achieve a functioning system, the following challenges had to 

be overcome: synchronization of the two observation stations, without the possibility of using 

a common trigger signal, as normal stereovision systems employ; intrinsic calibration of the 

optical systems; continuous calibration of the rotation matrices using stars as reference 

points, as the systems track the sky and therefore its orientation has to be continuously 

updated; detection of the candidate satellite features from the images, sometimes in a low 

contrast condition and in the presence of significant sensor noise (caused by long exposure 

and high gain, needed to increase the sensitivity); the challenge of stereo matching and 3D 

parameters computation. An experimental system capable of detecting and ranging satellites 

in the LEO, MEO, GEO and HEO orbits has been successfully set up. 

The main achievements and results detailed in Chapter (b-i): Scientific, professional 

and academic achievements. 

The candidate’s near future research activity will be focused on the two main 

directions that have produced the results described in this thesis: modeling and tracking 

complex, dynamic 3D environments, and stereovision-based space surveillance.  

The main challenges that will be tackled in the context of dynamic environment 

modeling and tracking are: 

- Developing a dynamic world model and tracking solution that will integrate the 

stereovision information in the measurement process without first transforming it 

into a raw elevation map. The raw stereo information will include disparity and 

grayscale values for each pixel in the image, and the measurement model will 

relate these values and their uncertainty directly to the tracking mechanism. In this 

way the error of the measurement can be estimated with much better precision, 

which will improve the tracking results. 

- Transforming a world model and tracking method into a sensor fusion technique, 

by integrating multiple measurement sources in the measurement process. As an 

intermediate representation, either the dynamic occupancy grid or the dynamic 

elevation maps are suitable for this attempt. 

The main challenges that are still open in the field of stereovision based space 

surveillance are: 

- Improving the quality of the range estimation, by an in depth analysis of the 

sources of uncertainty in the measurement process and devising solutions to 

remove these uncertainties. 

- Designing a tracking algorithm based on estimating the state of the target, state 

which is in fact made out of the orbital parameters. A method for determining the 

orbit parameters from the stereo results, and a prediction system capable of 

propagating these parameters, have to be designed. 

For the long term, the candidate estimates that his research will be focused on 

perception systems for robotics, driving assistance applications and space surveillance, but 

also on generic computer vision topics. 
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A more detailed description of each topic can be found in Chapter (b-ii): Scientific, 

professional and academic future development plans.  
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b) ACHIEVEMENTS AND DEVELOPMENT PLANS 
 

(b-i) Scientific, professional and academic achievements 
 

Articles constituting the habilitation thesis 
 

1. R. Danescu, F. Oniga, S. Nedevschi, “Modeling and Tracking the Driving 

Environment with a Particle Based Occupancy Grid”, IEEE Transactions on 
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10. Team member of the PNII-PCCA project SMARTCODRIVE (2012-2015), “Cooperative 

Advanced Driving Assistance System Based on Smart Mobile Platforms and Road Side 

Units”. 
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1. Solutions for modeling and tracking freeform dynamic 3D 

environments 
 

1.1. The particle based occupancy grid 
 

1.1.1. Introduction 

 

The tasks of modeling and perceiving the dynamic 3D environments face continuous 

challenges, because there are multiple types of scenarios, of different degrees of order and 

complexity. Some environments are well-regulated, and the types of static and dynamic 

objects are easily modeled and tracked using geometrical models and their parameters. The 

obstacles can be modeled as cuboids having position, size and speed, and the driving surface 

delimiters can be modeled as parametrical curves. In the driving assistance field, the highway 

and most of the urban and rural sections of road are usually suitable for geometrical modeling 

and tracking.  

The conditions change when the environment to be tracked is an intersection, a busy 

urban center, or an off-road scenario. Even if parts of this environment can be tracked by 

estimating the parameters of a geometrical model, many essential parts of the environment 

will not fulfill the constraints of the models. Also, sometimes it is better to have static and 

dynamic information about the environment before a model can be instantiated and tracked, 

or it may use this additional information in model fitting and model-based tracking. For these 

reasons, solutions for intermediate level representation and tracking are devised. These 

intermediate representation and tracking solutions can be based on occupancy grids. 

Maybe one of the first uses of occupancy grids, under the name of probabilistic local 

maps, is presented by Elfes in [1], in the context of sonar based robot navigation. Another 

paper by the same author [2] names the occupancy maps occupancy grids, and describes the 

probability inference mechanism for handling the uncertainty of a range sensor in computing 

the probability of each cell’s occupancy state. In the same reference we find a definition of 

the occupancy grid: “the occupancy grid is a multi-dimensional random field that maintains 

stochastic estimates of the cells in a spatial lattice”. 

The initial occupancy grids, such as those presented in [1] and [2], are simple 2D 

maps of the environment, each cell describing the probability of it being occupied or free. 

However, for many tracking applications, especially in the driving assistance field, there is a 

need for estimating the dynamic parameters of the environment, namely the speed of each 

grid cell. By adding the speed factor in the environment estimation, the complexity increases 

significantly, as the cells are now strongly interconnected. The work of Coué et al, presented 

in [3], uses a 4D occupancy grid, where each cell has a position and two speed components 

along each axis. By estimating the occupancy of each cell in the 4D grid, the speeds for the 

classical cells in the 2D grid can be computed.  

Another solution for the representation of speeds is presented by Chen et al, in [4]. 

Instead of having a 4D grid, this solution comes back to 2D, but uses for each cell a 

distribution of speeds, in the form of a histogram. The Bayesian inference mechanism relies 

on sensor data and antecedent cells, the list of antecedents being decided by the speed 

hypotheses. 

A simpler, but limited way of handling the dynamic aspects of the environment is 

presented in [5]. Instead of estimating the speed of each cell, this solution relies on 

“occupancy trails”, which are specific patterns, similar to the motion blur of the camera, 

which can be used to derive the trajectory and therefore the speed of the moving objects. A 
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more sophisticated method is presented in [6], where the inconsistencies in the static grid are 

detected as soon as they appear, and a multi-model Kalman filter tracker is initialized to track 

the dynamic object. 

We can attempt a first classification of the dynamic occupancy grid solutions (not the 

grids themselves) into fully dynamic, as those presented in [3], [4] and [7], and static-

dynamic hybrids, as those presented in [5] and [6]. 

One of the most important features of an occupancy grid tracking solution is the way 

the sensor model is used for grid update. The most time efficient way of updating a grid is to 

rely on the inverse sensor model, which derives the probability of a cell being occupied 

directly from sensor readout, assuming the occupancy of each cell is independent of its 

neighbors. This solution is maybe still the most popular, mainly in static grids [6]. However, 

the work of Thrun [8] proved that forward sensor probability models are preferable even in 

the case of static grids, even if this significantly increases the complexity of computation. 

The occupancy grids can have multiple spatial representations, and in [9] we are 

shown a comparison between three types of grids, the Cartesian (classic), the polar (distance 

and angle) and the column/disparity grids. All these grids have advantages and drawbacks. A 

Cartesian grid is closer to the real world representation, and can handle velocities easier, 

while the other types of grids are more “sensor-friendly”, making the computation of the 

sensor uncertainties easier. 

 

1.1.2. Solution overview 

 

This chapter presents a dynamic occupancy grid solution based on an original world 

model, made out of moving particles. Based on the surveyed literature, the occupancy grid 

tracking solution presented in this paper can be classified as having a Cartesian 

representation, using a forward sensor probability model, and producing a fully dynamic grid. 

The proposed method is most closely related to the works presented in [4] and [7], which use 

a speed probability distribution for each cell in the grid, instead of modeling the dynamic grid 

as a high dimensional space, as in [3].  

The proposed solution comes as an improvement over these techniques, because due 

to the use of moving particles the representation of the speed probability distribution and the 

estimation of this distribution are no longer a concern. The velocity distribution is not 

approximated as a histogram [4] or as a mixture of Gaussians [7], there is no assumption that 

one cell belongs to only one object with only one velocity, and the estimation of speed results 

naturally from the survival or elimination of the particles. The particles in a cell can have 

different speeds, and therefore they can handle the situation of overlapping objects, or the 

most likely situation when the objects are too close and the uncertainty of one overlaps over 

the uncertainty of the other. The complexity of the algorithm is linear with the number of 

cells in the grid and with the maximum number of particles in a cell, a tradeoff between 

accuracy and response time being always available as a simple parameter. Also, integrating 

other motion parameters, such as acceleration, does not increase the complexity of the 

tracking algorithm, because it only alters the way the position of the particles in time is 

computed. 

The first step of the algorithm is the prediction, which is applied to each particle in the 

set. The positions of the particles are altered according to their speed, and to the motion 

parameters of the ego vehicle. Also, a random amount is added to the position and speed of 

each particle, for the effect of stochastic diffusion. The second step is the processing of 

measurement information. This step is based on the raw occupancy cells provided by dense 

stereo processing, and provides the measurement model for each cell. The measurement 
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model information is used to weight the particles, and resample them in the same step. By 

weighting and resampling, the particles in a cell can be multiplied or reduced. The final step 

is to estimate the occupancy and speeds for each cell, and to group the cells into 3D oriented 

objects, for result evaluation. 

 

1.1.3. The world model 

 

The world is represented by a 2D grid, mapping the bird-eye view 3D space into 

discrete 20 cm x 20 cm cells. The size of the grid is 250 rows x 120 columns (this 

corresponds to a scene size of 50x24 meters). The aim of the tracking algorithm is to estimate 

the occupancy probability of each grid cell, and the speed components on each axis. The 

tracking goals are achieved by the use of a particle-based filtering mechanism.  

Considering a coordinate system where the z axis points towards the direction of the 

ego-vehicle, and the x axis points to the right, the obstacles in the world model are 

represented by a set of particles }...1),,,,,(|{
Siiiiiii

NiavrvcrcppS === , each particle i having 

a position in the grid, described by the row ri (a discrete value of the distance in the 3D world 

z) and the column ci (discrete value of the lateral position x), and a speed, described by the 

speed components vci and vri. An additional parameter, ai, describes the age of the particle, 

since its creation. The purpose of this parameter is to facilitate the validation process, which 

will be described in a subsequent section. The total number of particles in the scene NS is not 

fixed. This number depends on the occupancy degree of the scene, that is, the number of 

obstacle cells. Having the population of particles in place, the occupancy probability of a cell 

C is estimated as the ratio between the number of particles whose position coincides with the 

position of the cell C and the total number of particles allowed for a single cell, NC. 
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The number of allowed particles per cell NC is a constant of the system. In setting its 

value, a tradeoff between accuracy and time performance should be considered. A large 

number means that on a single cell multiple speed hypotheses can be maintained, and 

therefore the tracker can have a better speed estimation, and can handle fast moving objects 

better. However, the total number of particles in the scene will be directly proportional with 

NC, and therefore the time consumption will increase. 

The speed estimation of a grid cell can be estimated as the average speed of its 

associated particles, if one assumes that only one obstacle is present in that cell. Of course, 

the particle population can handle the situation when multiple obstacles, having different 

speeds, share the same cell, and in this case the speed estimate of the cell must be computed 

by clustering.  
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Thus, the population of particles is sufficiently representative for the probability 

density of occupancy and speed for the whole grid. Multiple speed hypotheses can be 

maintained simultaneously for a single cell, and the occupancy uncertainty is represented by 

the varying number of particles associated to the cell. The goal of the tracking algorithm can 
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now be stated: using the measurement information to create, update and destroy particles 

such that they accurately represent the real world. 

1.1.4. Prediction 

 

This step will derive the present particle distribution from the past information, 

preparing the particle set for measurement. The prediction equations will use odometry and 

motion model information. 

The basic odometry information available through the CAN bus of a modern car is the 

speed v and the yaw rateψɺ . Together with the time interval t∆ elapsed between 

measurements, these parameters can be used to compensate for the ego-motion, and separate 

it from the independent motion of the objects in the scene. Between measurements, the ego-

vehicle rotates with an angleψ , and travels a distance d. 

 

tψ ψ= ∆ɺ
         (1.1.3) 

ψ

ψ

2
sin2 tv

d
∆

=
        (1.1.4) 

 

The origin of the grid representation is displaced along the two coordinate axes by dc 

and dr. 

DXdd
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        (1.1.5) 
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cos
ψ

=
        (1.1.6) 

 

We denote by DX and DZ the cell size of the grid (in the current implementation, 0.2 

m). A point in the grid, at row r and column c, is displaced by an amount computed using the 

following equation: 
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The prediction is achieved using equation 1.1.8, which combines the deterministic 

drift caused by the ego-motion compensation and the particle’s own speed, with the 

stochastic diffusion caused by the uncertainties in the motion model. The quantities cδ , rδ ,

vcδ and vrδ are randomly drawn from a Gaussian distribution of zero mean and a covariance 

matrix Q equivalent to the state transition covariance matrix of a Kalman filter. The 
covariance matrix is diagonal, with the standard deviations for the speed components 

corresponding to a real-world amount of 1 m/s, and the standard deviations for the position 
corresponding to a real-world value of 0.1 m. These values will ensure that the system is able 

to cope with fast-moving objects even at a 10 fps frame rate. 
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From the grid model point of view, the prediction has the effect of moving particles 

from one cell to another, as seen in figure 1.1.1. The occupancy probability is thus 

dynamically adjusted using the particle’s motion model and the vehicle odometry. 

 

 
Fig. 1.1.1. Particles in the grid, before and after prediction. 

1.1.5. The measurement model 

 

The measurement model relates the measurement data, which is a binary 

occupied/free condition derived from the stereovision-generated elevation map [10], to the 

conditional probabilities p(measurement | occupied) and p(measurement | free), which will 

weigh the particles. In order to compute these probability values, several steps must be 

performed. 

First, the uncertainty of the stereo reconstruction process is computed. The 

uncertainty of the distance reconstruction, in the case of a rectified system, is given by: 

 

bf

z d
z

σ
σ

2

=

         (1.1.9) 

 

In the above equation, z denotes the distance (in the real world coordinates), b is the 

baseline of the stereo system, f is the focal distance in pixels, and dσ is the error in disparity 

computation (usually about 0.25 pixels, for a good stereo reconstruction engine).  

The error in lateral positioning (usually much smaller than the error in z), can be 

derived from the distance error. This error depends on the lateral position x (in the real world 

coordinates) and the distance z. 
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x

σ
σ =

         (1.1.10) 

 

The 3D errors are mapped into grid cell errors, by dividing them with the grid cell 

size on x and z. 
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The values of rowσ and columnσ are computed offline, at the initialization phase, for each 

cell in the grid.  

In order to compute the conditional probability of the measurement cell, under the 

occupied or free assumption one has to take into account a reality that is specific to 

stereovision sensors. The stereo sensor does not perform a scan of the scene, and therefore it 

does not output a single bird-eye view point for a real-world obstacle cell. We’ll take as 

example a pillar, which has almost no width, and no depth spread. The representation of a 

pillar in the occupancy grid should be a single cell. If the pillar were observed by a scanner-

type sensor, this sensor will output a cell, displaced from the true position by an amount 

specific to the sensor error. For the stereo sensor, things are different, because the camera 

observes the whole height of the pillar, and therefore each pillar pixel will get a distance and 

a lateral position. This means that once the pillar information is “collapsed” in the 2D grid 

representation, each part of the pillar may fall in a different cell, and the pillar will generate a 

spread of cells. The size of the spread area is controlled by the grid uncertainties on the c and 

r axes (real world x and z). 

This property leads to a good cue, which will contribute to the conditional 

probabilities of the measurement cells under the occupied/free assumption. The obstacle cells 

in the measurement grid around the current cell position, in an area of rowσ height and columnσ

width, are counted, and the number of found obstacle cells is then divided by the total number 

of cells in the uncertainty area. This ratio is denoted as pdensity(m(r,c) | occupied). 
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O(row, col) denotes the “occupied” value of the measurement grid, at position row 

and col. This value is 1 when an obstacle cell is present and 0 when not. 

The density cue for the “free” assumption is: 

 

)|),((1)|),(( occupiedcrmpfreecrmp
densitydensity

−=     (1.1.13) 

 

A graphic comparison between the raw measurement data and the density cue 

(conditional probability) of the measurement under the “occupied” assumption is given in the 

following figure. 
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Fig. 1.1.2. From the raw occupancy grid to the raw measurement density cues. Bottom-left: 

raw occupancy grid, bottom-right: density cue for the occupied cell hypothesis. 

 

Not all cells in the grid can be observed directly, and this fact must be taken into 

consideration by the tracking algorithm. Due to the limitations of the primary source of 

information, the stereovision-based raw occupancy grid, some of the cells are never observed. 

The raw occupancy grid only covers a longitudinal distance from 0 to 40 meters, a lateral 

span of 13 meters. Also, the field of view of the camera (angular span) limits the areas that 

are visible at close distance. The cells that are excluded by the field of view and distance 

limitations are marked as obstructed (unobservable) by default. 

Another way for a cell to become unobservable is if it is obstructed by an obstacle cell 

that is located between it and the observation origin (camera position). In order to decide if a 

cell is in such a situation, polar coordinates have to be used. Each cell is mapped to a polar 

grid. Then, for each angle, the cells are scanned in the order of their distance. Once a raw 

occupied cell is found, an obstruction counter is incremented for every cell that is behind the 

first occupied one. Then, the obstruction values are re-mapped into the Cartesian grid. 

Once each cell has an obstruction value, the final analysis is performed. Each cell that 

has an obstruction value higher than 10 is considered obstructed and considered as such in the 

particle weighting and resampling phase. However, this is not the only way the obstruction 

property is used. If a raw measurement cell is marked as “occupied”, but from the obstruction 

analysis it is found to be obstructed, the occupied cell is removed. This will make the raw 

occupancy map look more like a scanner-derived map. This reduction of measurement 

information must be performed before the computation of the other particle weighing cue, 

which relies on the distance from measurement. 

The obstruction-related processing steps are illustrated in figure 1.1.3. The left panel 

shows the raw measurement data, the middle panel shows the obstruction value for each cell 

(the lighter, the more obstructed), and the right panel shows the measurement data that 

remains after the obstructed cells are removed. This data set is used for the next cue 

computation. 

 



Radu Gabriel DANESCU 

 

17 

 

Habilitation Thesis

 
Fig. 1.1.3. Handling the occlusions. Left – original measurement information, middle – 

obstruction value for each cell, right – unobstructed measurement. 

 

The distance from measurement cue: 

For each cell in the grid, the distance to the nearest occupied cell in the measurement 

grid must be computed. For that, a modified version of the distance transform algorithm 

presented in [11] is used. The main issue is that not only the distance to the nearest 

measurement point must be known, but also the distance components on the two coordinate 

axes, row and column. The reason for this requirement is that the standard deviations for the 

positioning errors are different on the row and on the column, and therefore one cannot be 

substituted for another. 

The proposed distance transform algorithm performs like the classical two-pass L1 

norm one, but instead of updating only the cell distance to the nearest measurement, the 

position of the nearest measurement is updated along. The following algorithm updates a 

distance matrix D(r,c), initialized with zero for measurement occupancy cells, and with 255 

for the free  cells, and two position matrices Mr and Mc that hold the row and the column of 

the nearest occupied measurement cell. The values of Mr and Mc are initialized to the current 

row and column of each cell.  

 
Algorithm DistanceTransform 

For r=1 to max_r 

For c=1 to max_c 

 Update (r, c, -1, 0) 

 Update (r, c, 0, -1) 

End For 

End For 
For r = max_r to 1 

 For c = max_c to 1 

  Update (r, c, 1, 0) 

  Update (r, c, 0, 1) 

 End For 
End For 
 

Function Update(r, c, n, k) 

If D(r, c) > D(r+n, c+k) + 1 

 D(r, c) = D(r+n, c+k) + 1 

 Mr(r, c) = Mr(r+n, c+k) 

 Mc(r, c) = Mc(r+n, c+k) 

End If 

 

After the distance transform algorithm is applied, the distance-to-measurement-

occupied on rows and on columns, for each cell can be found by: 



Radu Gabriel DANESCU 

 

18 

 

Habilitation Thesis

 

|),(|),(

|),(|),(

crMccrd

crMrcrd

c

occupied

r

occupied

column

row

−=

−=
       (1.1.14) 

 

The distance to measurement-free-cell is computed as the difference between the 

double of the distance standard deviation and the distance-to-occupied, saturated to zero.  
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These distances are converted to a probability density value using the multivariate 

Gaussian equation (equation 1.1.16). The same equation is applied for both free and occupied 

distances, and therefore the condition status is a placeholder for both situations. 
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At the end of this step, the values )|),(( occupiedcrmpdistance
and )|),(( freecrmp

distance
 

are available for each cell. 

 

1.1.6. Particle weighting and resampling 

 

The classical steps of a particle filter based tracker are resampling, drift, diffusion, 

and measurement (weighting). This behavior replaces a population of a fixed number of 

particles with an equal number of particles, which approximates an updated probability 

density function over a space of parameters. However, this approach works when the 

particles are hypotheses of the state of a system, not when the particles are the system itself 

(we can see our tracked world as physically composed of particles).  

The proposed algorithm tries to use the particles in a dual form – as hypotheses, and 

as building blocks of the world that we track. Their role as building blocks has been already 

explained. However, if the reasoning is restricted to a single cell in the grid world, we can see 

that the particle is also a hypothesis. A particle in a grid cell is a hypothesis that this cell is 

occupied, and that the cell has the speed equal to the speed of the particle. More particles in 

the cell mean that the hypothesis of occupancy is strongly supported. Less particles in the cell 

means that the hypothesis of the cell being free is supported. One can regard the difference 

between the number of particles in a cell and the total number of particles allowed in a cell as 

the number of particles having the occupancy hypothesis zero. 

 

Weighting the particles 

If the number of particles in a cell is considered to be constant, some of the particles 

having the occupancy value “true” while some having it “false”, the mechanism of weighting 

and resampling can be applied.  

Assuming that the measurement data does not contain speed information, the weight 

of the particle depends only on the “occupied” hypothesis. Also, this means that all the 

particles having the same occupied hypothesis will have the same weight. 
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For each cell at position r, c in the grid, the weights for the free and for the occupied 

hypotheses is obtained by fusing the cues computed from the measurement data using the 

methods previously described. 

 

distance( , ) ( ( , ) | ). ( ( , ) | )
occupied density

w r c p m r c occupied p m r c occupied=   (1.1.17) 

distance( , ) ( ( , ) | ). ( ( , ) | )
free density

w r c p m r c free p m r c free=    (1.1.18) 

 

The equations 1.1.17 and 1.1.18 hold if the cell in the grid is not marked as 

obstructed, as described in the previous section. If the cell is obstructed, the weights of the 

occupied and free hypotheses will be equal, 5.0),(),( == crwcrw
freeoccupied

. 

The number of particles having the “occupied” hypothesis true is the number of “real” 

particles in the cell.  

 

|},|{|),( ccrrSpcrN iiiOC ==∈=       (1.1.19) 

 
The number of particles (hypotheses) having the “occupied” value false is the 

complement of NOC. NC is the maximum number of particles allowed in a cell, and this 
number is a constant of the algorithm. 

 

),(),( crNNcrN OCCFC −=        (1.1.20) 

 

The total posterior probability of a cell being occupied and of a cell being free can be 
computed from the number of free/occupied hypotheses, and their corresponding weights. In 

the following equations the row and column parameters are not shown, but they are implied. 
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The aggregate particle weights POC and PFC are used for particle resampling. The 

resampling of the particle population is done at the end of the measurement step, so that the 
next cycle can start again with an updated population of particles without concerning about 

their weight.  
 

Resampling 

A classical resampling algorithm would make NC random draws from the previous 

particle population of a cell, while the weight of each particle controls its chances of being 
selected. Because the “cell free” hypothesis particles are not relevant, the proposed 

resampling method will instead decide for each real particle (particle having the occupied 
hypothesis true) whether it is destroyed or multiplied (and, if multiplied, how many copies of 

it are created). 
The following algorithm describes the process of resampling, which is materialized as 

duplication or removal of particles from the particle set. The key solution for a real-time 
operation is that all the heavy computing tasks are executed at cell level, mostly by the use of 

LUT’s, while the particle level processing is kept very light. 
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Algorithm Resample 

For each cell C 

 Compute NOC and POC 

 Compute resampled number of particles NRC 

 NRC=POCNC 

Compute ratio between actual number of particles and the number of resampled particles 

 

OC

RC
C

N

N
f =  

End For 
For each particle pi 

 Find corresponding cell C  
 If (fC>1) – number of particles will increase 

  Fn = Int(fC)  Integer part 

  Ff = fC -Int(fC)  Fractional part 

  For k=1 to Fn-1  

   S.Add(pi.MakeCopy) 

  End For 
  r = random value between 0 and 1 

  If (r<Ff) 

   S.Add(pi.MakeCopy) 

  End if 

End if 
 
 If (fC <1) – number of particles will decrease 

  r = random value between 0 and 1 

  If (r> fC) 

   S.Remove(pi) 

  End if 

End if 

End For 

 
The system will compute the number of particles that each cell should have after the 

process of resampling has been completed. The ratio fC between this number and the existing 
number of particles in the cell will tell us if the particles have to be duplicated or removed. If 

fC is higher than 1, the number of particles has to be increased. The integer part of the 
difference between fC and 1 tells us the number of certain duplications a particle must 

undergo (for instance, if fC is 2, each particle will be doubled). The fractional part of the 
difference is used for chance duplication: each particle will have a probability of being 

duplicated equal to the fractional part of this difference. 
If f is lower than 1, the number of particles has to be decreased, by removing some of 

the particles. Each particle has 1- fC chance of being eliminated. 
At this point the cycle is complete, and the tracking algorithm can process a new 

frame. Secondary estimations for occupancy, speed, or clustering the cells into objects can be 
performed at the end of this step. 

 

 
Fig. 1.1.4.  Weighting and resampling. The weight of the occupied hypothesis is encoded in 

the darkness of the cell of the left grid. 
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1.1.7. Particle system initialization 

 

Although the measurement step takes care of particle creation and deletion, this step 
only works if there are particles to be duplicated or deleted. For the prediction-measurement 

cycle to work, the particle population has to be initialized.  
From a strictly probabilistic point of view, each cell’s state is unknown at startup, 

which means that the cell has equal probability of being occupied or free. In the proposed 
tracking system, this would mean that each cell should be assigned a number of particles 

equal to half the total number of particles allowable in a cell. However, this approach would 
significantly reduce the speed of the system, and would require permanent re-initialization.  

The solution is to use the measurement occupancy grid to create particles. If a 
measurement cell is of type obstacle, its p(m(r,c) | occupied) is high, and there are no 

particles in the corresponding tracked grid cell, a small number of particles will be created. 
The initial speed components vr and vc of the created particles will be sampled randomly 

from an initial range of possible values, and the initial position is confined to the creation 
cell. In this way, the initialization is a continuous process.  

Particles are automatically removed when they go outside the grid area, in the 
prediction phase. Another case of “administrative” removal (removal not caused by the 

probability mechanism) is when, due to particle drifting, the number of particles in a cell 
exceeds the allowed value. 

 

1.1.8. Individual object detection based on the particle occupancy grid 

 
After each grid cell receives an occupancy probability and a speed estimation, the 

next step is to use these results for extracting the individual objects in the scene. For this 
purpose a labelling algorithm able to take advantage of the dynamic properties of the grid is 

used. 
 
Algorithm Labelling 
Input: Cell – grid of cells, with occupancy value and speed 

Output: Label – grid of labels 

Uses Queue – queue of pairs of row, column coordinates 

While ( (r,c) = FindUnlabeledOccupiedCell() != NULL) 

CurrentLabel = MakeNewLabel() 

Label (r, c) = CurrentLabel 

Queue.Insert((r,c)) 

Area (CurrentLabel)=1 

MinRow(CurrentLabel)=r; 

MaxRow(CurrentLabel)=r; 

MinColumn(CurrentLabel)=c; 
MaxColumn(CurrentLanel)=c; 

While Not Queue.IsEmpty() 

 (rr, cc) = Queue.Remove() 

 Update MinRow(CurrentLabel) 

 Update MaxRow(CurrentLabel) 

 Update MinColumn(CurrentLabel) 

 Update MaxColumn(CurrentLabel) 

 Increment Area(CurrentLabel) 

 If Not AreaRatioCheckOk() 

  Queue.ForceEmpty() 

  Break() 

 End if 
 For Each (rri, cci) in Neighborhood(rr, cc) 

      If UnlabeledOccupiedCell(rri, cci)  
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  If Compatible (Cell(rr, cc), Cell(rri, cci)) 

   Label(rri, cci)= CurrentLabel 

   Queue.Insert (Point(rri, cci)) 

  End if 

      End if 

 End For 
End While 

End While  

 

The labelling algorithm is based on the generic solution of breadth first exploration of 
graphs, as the occupied cells can be regarded as nodes in the graph and the neighbourhood 

relationship between them as edges. In the remaining of this section the main elements of the 
cell grouping algorithm are described.  

The input to the labelling algorithm is the occupancy grid, an array of Cell-s, indexed 
by the row and column. Each cell has the following properties: occupancy, ranging from 0 to 

1, expressing the probability that the cell is occupied, speed, the absolute value of the 
estimate speed for the cell, and orientation, which describes the orientation of the estimated 

speed vector. 
The output of the algorithm will be the 2D array Label, having a unique identifier for 

each connected component, which hopefully will correspond to a real-world object. Initially, 
this array is initialized with zero. 

The algorithm starts by finding occupied cells that have no label assigned to their 
position yet. A cell is considered to be occupied if the occupancy value is above a fixed 

threshold of 0.5. A new label is generated, and assigned to this initial point. A set of 
parameters are initialized at this step: the area, which is the number of cells assigned to a 

connected component, and the extreme coordinates of this component, minimum row, 
minimum column, maximum row and maximum column. These parameters will be updated 

as the labelling algorithm will gradually cover the whole object.  
The main labelling loop will execute as long as the queue is not empty. A coordinate 

pair (which corresponds to a cell already labelled) is extracted from the queue, and the points 
in its Neighbourhood are analyzed. The size of the neighbourhood is defined by the 

uncertainty of the stereo measurement, as the neighbourhood is a rectangle of size 2 rowσ by 2

columnσ , centred in the current point.  

Each neighbour (rri, cci) of the current position is tested for compatibility before it is 
added to the connected component. An ordinary labelling algorithm takes into account only 

the vicinity relations, but this can sometimes lead to false connection between different, but 
closely positioned objects, as shown in figure 1.1.5. 

 

 
Fig. 1.1.5. Vicinity-only labelling, without taking into account the dynamic cell information. 

Left – label grid, right – resulted 3D objects. 
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Fig. 1.1.6. Labelling using the speed compatibility criteria. 

 
The compatibility test is used exactly for the purpose of preventing such false 

associations. The neighbours of the current cell will receive the current label only if the speed 
characteristics of these cells are similar. Two cells are said to be compatible if: 

- The difference in the orientation of the speed vectors in the two cells is less 
than 30 degrees. 

- The difference in speed vector magnitudes is less than 30% of the value of the 
largest magnitude of the two cells. 

Another problem of the classical labelling approach for object extraction is that the 
algorithm will connect anything as long as the compatibility is valid, and sometimes the 

resulted objects have a considerable size. Also, most of the huge objects are static, and 
therefore their orientation is difficult to estimate (extracting the orientation from shape is not 

very robust). The most problematic case is the one described in figure 1.1.7, when a non-
oriented cuboid will be completely unsuited for the large structure. 

 
Fig. 1.1.7. Massive static objects. 

 

In order to prevent the generation of such deformed objects, we have designed the 
AreaRatioCheck test. The following coefficient is computed any time a cell position is 

extracted from the queue, and the area and the coordinate limits are updated: 

))(( MinColumnMaxColumnMinRowMaxRow

A

−−
=ρ     (1.1.23) 

 



Radu Gabriel DANESCU 

 

24 

 

Habilitation Thesis

When the object’s length or width is above four meters, the area ratio is tested against 
a 0.5 threshold. This condition means that the labelled object should fill its non-oriented box 

at least 50 %. If the test fails, the labelling process is interrupted by forced emptying of the 
queue, and then resumed with a new label. The effect is shown in figure 1.1.8, where the 

large static object is broken into smaller pieces which depict the real world geometry more 
accurately. 

 

 
Fig. 1.1.8. Large objects are split into smaller pieces. 

 
After the labelling process is finished, each object is identified by its label L. The first 

property that is computed is the speed vector Lv
�

. In order to estimate the speed of an object, a 

weighted average of the speeds of the object’s cells is performed, with the occupancy 
probability fulfilling the role of weight. 
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The magnitude and the orientation of the speed vector are computed, and a static 

versus dynamic discrimination of the objects is performed (all objects having the speed 

vector magnitude above 1.5 m/s are dynamic). The orientation of the static objects is not 

computed, and their extremities are given by the maximum and minimum row and column 

numbers. 

The orientation of the dynamic objects is given by the orientation of their speed 

vectors. The width and the length of the dynamic objects are computed by computing the 

distances of the object’s labelled grid positions from the axis of orientation, already known. 

 

1.1.9. Experimental results 

 

Qualitative assessment 

Qualitative tests, which allow us to monitor the general behavior of the system in 

complex situations, are performed on video sequences recorded in real urban traffic. These 

tests show how the occupancy grid is computed, how the speed vector for each cell is 
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estimated, and how the grid results are grouped into cuboidal objects having position, size, 

orientation and oriented speed vector. The speed of the cells is displayed in color, using Hue 

for orientation and Saturation for magnitude. Due to the need for compact representation of 

the grid results, we have also encoded the occupancy probability as the color’s Intensity, 

making full use of the whole HSI color space. 

 

 
Fig. 1.1.9. Color coding for speed vectors (full and half occupancy). 

 

Video files, describing results in different traffic situations, can be downloaded from 

this page: http://users.utcluj.ro/~rdanescu/gridtrackingtests.htm . The main qualitative test is 

the sequence http://users.utcluj.ro/~rdanescu/long_sequence.avi , which shows the results 

over a significant distance through Cluj-Napoca. Some highlights of this sequence are 

presented in figure 1.1.10: 

a) Crossing pedestrian, mixed with lateral traffic and static distant objects. 

b) Incoming vehicle, static lateral scenery. 

c) Two incoming vehicles, the most distant one only visible for a couple of frames. 

d) Moving vehicle against static wall, ego vehicle performing a sharp turn left. 

e) Distant object, accurately tracked. 

f) Moving object against static background. The protrusion from the static background 

near the moving object is actually an occluded stationary car. The ego vehicle is performing a 

sharp right turn, which causes the instability in the estimation of the static nature of the 

background in the top right corner. Also, that area was previously occluded by the moving 

vehicle, which means that the static nature of the cells has not yet been detected, due to the 

short observation time. 

g) Distant crossing vehicle going through stationary vehicles. The ego vehicle is 

turning right. 

h) Tracking a moving target through a narrow corridor of stationary vehicles. 

The behavior of the system in the case of occlusions is highlighted by the sequence 

http://users.utcluj.ro/~rdanescu/cluj-occlusion.avi . Key points from the sequence are 

presented in figure 1.1.10. While the ego vehicle is performing a sharp left turn, a vehicle 

comes from our right, and is occluded by a vehicle coming from our left. The occluded 

vehicle is also maneuvering, changing its heading to its left. While occluded, its particle 

distribution becomes diffuse, accounting for possible exit trajectories, and the correct heading 

is quickly identified as the object becomes observable again. 

An extensive sequence, recorded while observing an intersection with the ego vehicle 

standing still, produced the results that are available in the file 

http://users.utcluj.ro/~rdanescu/wob-occlusion.avi . A highlight of this sequence is shown in 

figure 1.1.11. A vehicle comes from our right, then turns left and proceeds to exit the scene. 
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Fig. 1.1.10. Extended sequence in urban traffic – highlights. 

 

 
Fig. 1.1.11. Left – handling occlusions, right – handling close objects of different speeds. 

 

During this maneuver it occludes the static object near its left side, but does not 

become joined with this structure due to the speed-sensitive nature of the cell clustering 

algorithm. One can see how the occupancy becomes diffused as the object is occluded by a 

large truck, which then again occludes the static objects on the right. 

 

Numerical evaluation in controlled environment 

The numerical evaluation was performed on sequences acquired in controlled 

scenarios, with known target speed and orientation. We have performed four tests, with the 

same orientation, -45 degrees, but different speeds, 30 km/h, 40 km/h, 50 km/h, 60 km/h. The 
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results that were evaluated are the estimated speed and orientation of the 3D cuboid resulted 

from clustering the occupied grid cells. These results are compared to the ground truth, and 

they are also compared to the results of another means of intermediate extraction of 3D 

dynamic information, the optical flow combined with stereovision. The results of optical flow 

that are taken into consideration are the speed and orientation of the 3D cuboid obtained from 

grouping the points having 3D and speed information [12]. The controlled test sequence is 

highly favorable to the optical flow approach, as the vehicle is clearly visible, has plenty of 

features that can be matched from one frame to another, a situation which provides plenty of 

good speed vectors to be averaged into an accurate vector of the cuboid. 

The results of speed and orientation estimation are displayed in the graphs shown in 

figures 1.1.13 to 1.1.16. The grid tracking results are shown with the red dotted line. One can 

see that both methods quickly converge towards the ground truth, but the grid tracking results 

are more stable (lower error standard deviation) and more accurate (lower mean absolute 

error). This fact is confirmed by the tables 1.1.1 and 1.1.2. 

 

 
Fig. 1.1.12. Controlled test sequence. 

 

 
Fig. 1.1.13. Speed and orientation estimation, 30 km/h test. 

 

 
Fig. 1.1.14. Speed and orientation estimation, 40 km/h test. 
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Fig. 1.1.15. Speed and orientation estimation, 50 km/h test. 

 

 
Fig. 1.1.16. Speed and orientation estimation, 60 km/h test. 

 
TABLE 1.1.1 

NUMERICAL RESULTS – SPEED ESTIMATION ACCURACY 

Speed of 

target 

Particle 

grid MAE 

Particle 

grid 

STDEV 

Optical 

flow MAE 

Optical 

flow 

STDEV 

30 km/h 0.9016 0.9731 2.0141 2.3087 

40 km/h 1.0184 0.9730 2.1181 1.9017 

50 km/h 2.4989 2.3370 3.7329 4.4966 

60 km/h 2.1279 1.3858 3.0677 2.2725 

 
TABLE 1.1.2 

NUMERICAL RESULTS – ORIENTATION ESTIMATION ACCURACY 

Speed of 

target 

Particle 

grid MAE 

Particle 

grid 

STDEV 

Optical 

flow MAE 

Optical 

flow 

STDEV 

30 km/h 0.9728 0.8376 1.8219 2.0122 

40 km/h 1.0321 0.8616 1.1962 1.0146 

50 km/h 0.4695 0.2659 1.2775 1.1095 

60 km/h 0.9343 0.6739 1.4554 1.1634 

 

The time performance depends on the obstacle load of the scene, which influences the 

total number of particles. For a typical urban scene, and a total number of particles in a cell 

NC=50, the total running time is about 40 ms per frame, on an Intel Core 2 Duo processor at 

2.1 GHz. Due to the fact that the particle tracking system shares the processor with other 

sensorial processing algorithms such as lane detection, object classification and so on, the 

total frame rate is about 10 fps. 

1.1.10. Conclusion 

 

This chapter described a solution for dynamic environment modeling and tracking, 

which employs particles in order to estimate the occupancy and speed of the cells of an 

occupancy grid. This flexible and real-time solution is capable of correctly track dynamic 

environments even at high relative speeds, without the need of a very high frame rate from 

the measurement system. The test sequences prove that the method is sensitive enough to 

detect and estimate the speed of a pedestrian, but also the speed of a fast moving vehicle. The 

accuracy of the speed and orientation estimation is proven by the tests conducted in 

controlled situations. 
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The particle grid tracking solution is an elegant extension of the dynamic occupancy 

grid solutions that were surveyed. The particle population approach relieves the designer of 

the choice of a speed probability distribution for each cell, and can handle multiple divergent 

speed hypotheses. Also, the speed distribution does not have to be estimated, and the 

measurement data only controls the creation or deletion of particles. The proposed technique 

is a new view of the occupancy grid problem, a view oriented towards practical 

implementation, and a view that can open the door to interesting extensions. 

 

1.2. The particle based dynamic elevation map 
 

1.2.1. Introduction 

 

While the dynamic occupancy grids are a reasonable representation for a dynamic 3D 

environment if the interested entity (robot, vehicle) moves on a planar surface, and only cares 

for the environment elements from the obstacle / not obstacle point of view and, if obstacle, 

the dynamic characteristics of it may be of interest, sometimes a more detailed freeform 

description of the environment is necessary. 

Digital elevation maps (DEM) are a simple yet powerful way of modeling complex 

3D environments. The environment is represented as a 2D grid, each cell in the grid being 

described by its height. The digital elevation maps can be large data structures, used for 

terrain mapping [13], a function which makes them extremely useful for planetary 

exploration tasks [14], but they can also be local structures, used for robotic navigation [15], 

environment representation for driving assistance systems [10], or even indoor pedestrian 

tracking [16]. The digital elevation maps can be built in real time, using multiple types of 3D 

sensors, the most popular being of the laser [17] and of the stereo vision  [10] [16] family. 

The cells of the elevation map can be then analyzed and classified into traversable, obstacles 

and others [10] [15].  

The elevation map representation of the environment is sometimes described as 

having 2.5 dimensions [18], because the description is not complete – bridges and tunnels, for 

example, cannot be fully represented. For this reason, researchers have proposed several 

extensions. One of the problems of elevation maps, described in [18], is that when they are 

built using the average (or maximum) height of the sensorial points in each grid cell, 

structures such as bridges and tunnels will appear as non-traversable. Assuming the 

overhanging structure is of no concern, the same paper presents an optimized map building 

algorithm which looks for gaps in the vertical structures and generates the map of the 

drivable surface below. In [19], we find a further extension of the elevation map, called Multi 

Level Surface Map, which can successfully model the overhanging structures. The 

environment is organized as a 2D map, but instead of storing occupancy or height, each cell 

stores a set of surface patches, which are defined as Gaussian distributions of height and 

depth. This way, the surface under a bridge will be one surface patch, and the bridge itself 

another. The heights are defined by their mean and standard deviation, which are updated in a 

probabilistic fashion. An even more general extension, presented in [20], is the multi-volume 

occupancy grid, which is a probabilistic representation of height volumes for each map cell, 

each volume having a starting position from the ground and a height, the crucial difference 

being that the volume can be either occupied or empty, and the occupancy being a probability 

value. This way, free and occupied volumes can be modeled, and uncertainty can be 

associated. Another solution that combines elevation and occupancy, using the uncertainty 

element (called “credibility”), can be found in [21]. 
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All these elevation map solutions available in the literature are, unfortunately, static. 

The purpose of my work was to devise a workable solution for an elevation map capable of 

modeling dynamic environments, and to devise a tracking algorithm for updating this map. 

Inspired from the previous results regarding the particle-based occupancy grid, a solution for 

dynamic elevation map modeling and tracking based on particles is proposed. 

The unified modeling and tracking solution is based on particles that are not simply 

state hypotheses, as in classical particle-based tracking solutions, but are the building blocks 

of the 3D world. The particles can move from one cell to another, providing an elegant and 

intuitive mechanism for prediction, and can be created and destroyed based on their 

agreement with the measurement data (the state update). In the previous chapter, this particle 

mechanism was used for modeling and tracking dynamic occupancy grids. The moving 

particle, however, can carry many items of information: speed, position, and height. A 

population of particles having speeds and heights becomes a probabilistic model for a fully 

dynamic elevation map.  

1.2.2. Proposed world model: the particle-based dynamic elevation map 

 

An elevation map representation of a 3D scene in the coordinate system XYZ 

(consider a coordinate system with the origin on the ground in front of the vehicle, the X axis 

pointing forward, the Y axis pointing to the left, and the Z axis pointing up) is a function 

Z(X,Y), which assigns to every point (X,Y) of the horizontal plane XOY a height coordinate Z. 

This continuous mapping is further approximated by dividing a finite region of the XOY plane 

into cells, each cell i being identified by a position in a finite matrix, described by a row ri 

and a column ci. A height value hi is assigned to each cell, and thus the elevation map 

approximation becomes an array of height values. 

 
Fig. 1.2.1. a) The dynamic elevation map, a 3D surface with attached speed vectors; b) the 

continuous surface is approximated by a grid of fixed size cells, with heights and speeds for 

each cell. 

 

If the 3D scene is dynamic, each cell of the discrete elevation map can have an 

assigned speed. If the application is limited to the driving scenario, it can be assumed that the 

objects in the scene move mainly in the horizontal plane, and the speed vector has only two 

components, v
x
 and v

y
. Thus, in the continuous case we have two functions, v

x
(X,Y) and 

v
y
(X,Y), and in the discrete case we can speak of v

r
i and v

c
i – the row speed and the column 

speed for each cell i in the map, as shown in Fig. 1.2.1. 

Thus, a dynamic digital elevation map can be described by three arrays of values, hi, 

v
r
i and v

c
i. In an ideal world, all these values can be measured, and an accurate world 

description can be generated. In the real world the sensors have limited range, limited 

precision, limited reliability, and all these problems lead to some cells of the map to be 

unobservable, or to have a poor measurement of their height. All these limitations cause 

uncertainties, and these uncertainties have to be represented in the world model. Thus, instead 

of computing single values for height and speed components, the system must compute 

probability densities. A cell i in the dynamic elevation map is associated to a random variable 
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( , , )r c T
i i i ih v v=X , which has three dimensions (height, row speed, and column speed). The 

objective of the tracking algorithm is to compute the probability density of Xi, for each cell i 

in the map, based on a sequence of measurements Z(0)…Z(t). The measurement Z includes 

all available sensorial data for the time instant t, not limited to the current cell. 

 

( ( ) | (0), (1),..., ( )) ( ( ) | ( )) ( ( ) | (0),..., ( 1))i i ip t t p t t p t t∝ −X Z Z Z Z X X Z Z (1.2.1) 

 

The tracking problem is formulated as a Bayesian recursive estimation of probability 

densities, as described by (1.2.1). The past state density ( ( 1) | (0),..., ( 1))ip t t− −X Z Z and the 

state transition model ( ( ) | ( 1))ip t t −X X are combined to form the predicted state density

( ( ) | (0),..., ( 1))ip t t −X Z Z , and the sensorial information at time t is used to update the state 

through the observation model ( ( ) | ( ))ip t tZ X . 

Assuming that only the immediate past matters (the first order Markov model 

assumption), the prediction for a cell i can be computed from the past estimated states of all 

the cells j in the grid, ( ( 1) | (0),..., ( 1))jp t t− −X Z Z , and the dynamic model ( ( ) | ( 1))i jp t t −X X . 

 

( ( ) | (0),..., ( 1))

( ( ) | ( 1)) ( ( 1) | (0),..., ( 1))
i

i j j
j

p t t

p t t p t t

− =

− − −∑
X Z Z

X X X Z Z    (1.2.2) 

The most commonly used techniques for approximating probability densities in 

tracking applications are the Gaussian function (mostly used in Kalman filtering) and the 

particle (sample) set of values. A description of the most popular solutions for representing 

and tracking probability density functions (PDF) can be found in [22]. The particle-based 

solutions are preferred when the PDF is multi-modal or its shape is not known a priori. 

Another reason why this work is based on particles is that a mechanism for moving them 

from one cell to another can be intuitively defined.  

The dynamic elevation map will be described, at time t, by a set S(t)of particles, each 

particle k being described by a state vector xk(t): 

 

1 2 ( )( ) { ( ), ( ),..., ( )},where

( ) ( ( ), ( ), ( ), ( ), ( ))
SN t

c r T
k p k p k p k p k p k

S t t t t

t c t r t h t v t v t

=

=

x x x

x
    (1.2.3) 

 

Each particle k is located in the grid cell identified by the row prk, and the column pck. 

The grid is a map of 250 rows x 120 columns, and each cell in the grid is a rectangle of 20 cm 

x 20 cm. Thus, the grid spans a surface of 50x24 meters in the horizontal (XOY) plane. Each 

particle represents a hypothesis of the state of the cell: a possible height phk(t), a possible 

forward speed pv
r
k(t) and a possible lateral speed pv

c
k(t), as depicted in Fig. 1.2.2. The row, 

column and speed of a particle are expressed as multiples of the cell size DX and DY 

(currently 20 cm), and the height is expressed as a multiple of the height element of size DH 

(currently DH=1 cm).  
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Fig. 1.2.2. The particle dynamic elevation map. Each cell has a population of particles, each 

particle having height and speed. The particle population can approximate a multi-modal 

probability distribution of heights and speeds for each cell in the map. 

 

Based on the particle set S(t), the probability densities involved in the tracking process 

can be approximated. The multi-modal probability density of the state of a cell i is derived 

from the particles whose position pck and prk coincides with the row and column of the cell i, 

ri and ci. 

The dynamic model is described by (1.2.4). Assuming that the past state of a cell j is 

described by the particle value ( 1)k t −x , the current state can be described by a sample drawn 

from a normal distribution centered in ( ( 1))k t −f x  and having a covariance matrix ( )i tQ . The 

function f encodes the uniform motion model of a particle and the translation and rotation 

motion of the observation platform, while the uncertainty matrix encodes the possible 

differences between the assumed models and the real world. 

 

 ( ( ) | ( 1) ( 1)) ( ( ( 1)), ( ))i j k k ip t t t N t t− = − ≈ −X X x f x Q    (1.2.4) 

 

The prediction described by (1.2.2), based on the past state and the dynamic model, 

will take the form of altering the position and velocity of all particles, by applying the motion 

model equation f (a process called particle drift) and adding random quantities controlled by 

the matrix Qi(t), a process called particle diffusion.  

The measurement model ( ( ) | ( ) ( ))i kp t t t=Z X x is defined for each cell i, and depicts the 

probability density of the measurement Z(t) under the assumption that the state of the cell is 

described by the particle k. This density is assumed to be a normal distribution centered in 

( , , ( ))i i p kr c h t  and having an error covariance matrixΣ ( )i t , which describes the uncertainty of 

the sensor: 

 

Σ( ( ) | ( )) ( )) (( , , ( )) , ( ))T
i k i i p k i

p t t t N r c h t t= ≈Z X x    (1.2.5) 

 

The measurement model based update, described by (1.2.1), will take the form of 

assigning to each particle a weight proportional to the agreement between the particle’s state 

and the measurement. This weight is not included in the proposed world model, because as 

soon as the particles are weighted they are re-sampled, a process which generates a new 

particle population from the weighted one, the particle’s weight controlling the chances of it 

being replicated [23]. Thus, the new, weight-free particle population encodes the updated 

probability density. 

 

c

h

r

Height

Position

Speed
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1.2.3. Overview of the tracking algorithm 

 

The purpose of the dynamic elevation map tracking algorithm is to continuously 

estimate the probability density for the height and speed of each cell in the grid. As the 

probability densities are represented by particles, the purpose of the tracking algorithm is to 

continuously update the particle population of the scene, a process driven by the 

measurement data. A flowchart of the tracking algorithm is presented in Fig. 1.2.3. The main 

tracking steps follow the drift-weight-resample mechanism of the particle filter variant called 

CONDENSATION, described in [23]. 

The first step of the tracking cycle is the Particle Drift, a process that takes the 

particle population resulted at the end of the previous cycle and applies the motion equations 

of the host vehicle and of the particles themselves in order to predict their present positions. 

The particles are moved from one cell to another due to the motion of the host vehicle 

relative to the observed scene, and due to the speed values of the particles themselves. 

After drift, the particles are subjected to the process of Diffusion. The states of the 

particles (position, height, and speed) are altered by small random amounts, which reflect the 

uncertainties that affect the evolution of the scene in time (or the difference between how a 

real scene alters its state as the time passes, and the way we predict the evolution of states). 

Drift and Diffusion form the prediction, preparing the particle population to meet the 

measurement and be altered by it.  

 

 
Fig. 1.2.3. Dynamic elevation map tracking algorithm. 

 

The measurement comes in the form of a Raw Elevation Map, a static height map of 

the same size as the one that is tracked, derived directly from dense stereo information 

processing. This raw map is affected by the sensor-specific errors, which need to be taken 

into consideration.  

The first collision between the particle population and the measurement data is in the 

process of Pitch Compensation. The pitch angle can change quite abruptly, in an 

unpredictable way, due to imperfections in the road surface. Changes of this angle affect the 

height of the cells in the map significantly, and for this reason the system must estimate a 

pitch difference between frames, and adjust the particle heights to the new pitch.  
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After the pitch-based height adjustment, the particles are subjected to Particle 

Weighting. This process assigns to each particle a weight which reflects the quality of the 

match between the height of the particle in a specific cell and the measurement height of the 

raw elevation map. This process must take into account the specific uncertainties of 

stereovision (the observation model). For computation speedup, the probabilistic observation 

model is built as a height weight look-up table for each grid cell, a process called Height 

Weight Computation. Then the particle weighting process becomes a simple assignment of a 

value from a Look-Up Table (LUT).  

After each particle receives a weight based on their agreement with the measurement 

data, a new population of particles is generated for each cell, in the process of Resampling. 

The weight of a particle influences the chances of this particle to be selected. This way, the 

particles having the height closer to the height of the measurement survive and multiply, 

while the others are destroyed. 

If a cell in the grid has very few particles (or none), the measurement data, already 

pre-processed in the form of a height weight LUT, will be used to create new particles, which 

will have random speeds, and a height distribution consistent with the height weight LUT.  

With the updated particle population, the system is ready for the next tracking cycle. 

While the result of the tracking process is the particle population itself, the useful result is a 

dynamic elevation map, containing a height value and a speed vector for each cell. The 

Estimation and Output step will compute these values, and will generate a scene description 

using a popular 3D modeling language, for analysis and visualization. 

 

1.2.4. Algorithm description 

 

Particle Drift and Diffusion 

The state transition probability model is implemented by the deterministic drift and 

the stochastic diffusion. The deterministic drift changes the state of the particles by taking 

into account two factors: the movement of the observing vehicle, which causes a relative 

movement of the whole scene in the vehicle’s coordinate systems, and the movement of the 

mobile particles, according to their speed. The observing vehicle’s movement in the 

horizontal, XOY plane, can be computed from its speed v, and its yaw rateψɺ , which are read 

from the CAN bus, and which are integrated over the time interval between two measurement 

frames, t∆ .  

The speed vector of the particle, consisting of the two components pv
c
k(t-1) and pv

r
k(t-

1), is also related to the observing vehicle’s coordinate system. For this reason, when the 

observing vehicle rotates, the speed vector of the particle must rotate in the opposite 

direction, so that its direction in the scene remains unchanged.  

After the observation platform motion corrected particle positions and speeds are 

computed, the drift process is completed by adding the particles’ motion caused by their own 

speed. After drift, the particles are subjected to diffusion. The state of each particle is altered 

by random quantities ( )pc tδ , ( )pr tδ , ( )ph tδ , ( )cpv tδ and ( )rpv tδ , drawn from a normal distribution 

of zero mean and experimentally adjusted covariance matrix Qi(t), depicting the state 

transition uncertainty.  

After the drift and diffusion are applied for each particle in the scene, a final step is to 

ensure that each cell in the grid has a number of particles less or equal to NC, the maximum 

allowed number of particles in a grid cell (a constant of the system, currently 200). For this 

reason, if prediction assigns to a cell more particles than the maximum allowed number, 

excess particles are destroyed. The destruction process is random, having no preference for 

existing particles in the cell or for newcomers. 
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The Sensorial Information: the Raw Elevation Map 

The main source of sensorial data for elevation map tracking is a dense stereovision 

system  [24], which is able to extract 3D information for the (mildly) textured areas in the 

stereo image pair. The 3D points are subsequently assigned to corresponding cells in the XOY 

grid, the height of a grid cell i being the Z coordinate of the highest point assigned to the cell. 

The density of 3D points per cell is also computed, and used for basic validation, under the 

assumption that road cells will have a lower point density than obstacle cells. This validation 

allows the elimination of erroneously high elevation values, which are mostly caused by 

stereovision mismatches. A detailed description of the raw elevation map computation 

technique can be found in [10]. For the elevation map tracking algorithm, the following items 

of information from the raw elevation map are used: 

• Measurement height of each cell i, denoted by zi. For convenience, the heights are 

organized as a 2D array of values that can be accessed by specifying the row and the 

column coordinate, thus zi is also written as z(ri, ci).  

• Data availability for each cell, denoted by di. di=1 means that height for this cell is 

available, and di=0 means that no measurement data is available for cell i. For 

convenience, the di values are organized as a 2D array that can be accessed by 

specifying the row and the column coordinate, thus di is also written as d(ri, ci). 

Due to the fact that not all pixels in the image will obtain 3D coordinates from the 

stereovision engine, and not all areas in the grid are visible, due to occlusions and limited 

field of view, not all cells in the raw map have a measured height. The tracking algorithm is 

made aware of this situation by di. Fig. 1.2.4. shows an example of raw elevation map. 

 

 
Fig. 1.2.4. The raw elevation map, extracted from dense stereovision: a) original grayscale 

image; b) top view of the grid, with heights encoded as grayscale values. The sensorial 

information covers only a part of the world map, and the areas that are not sensed are 

depicted in light gray; c) 3D representation of the raw map. The non-textured cells represent 

missing height data in the raw map, due to field of view limitations or errors of stereo 

reconstruction, such as those caused by dark shadows. 

 

Pitch Angle Compensation 

 

According to the world model described in section 1.2.2, a particle k is located in the 

elevation grid at the row coordinate prk and column coordinate pck, and has a height phk. Due 

to the continuous nature of the observation process, the heights of the map are not expected to 

change abruptly from one frame to another, except when the observation vehicle performs a 

pitching motion. The effect of a pitch angle variation between two frames, α∆ , translates into 
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a difference between the height of a particle and the measured height for the cell containing 

the particle: 

 

1
( ( , ))

tan
p k p k p k H

k

X p k

h z r c D

D r
α −

 −  ∆ =    
     (1.2.6) 

 

Naturally, (1.2.6) is valid only when the particle is part of a static structure, and its 

height is close to the true height of the structure in the scene. These conditions are not valid 

in the general case, but we can make several assumptions: 

• The vast majority of the particles in the scene belong to static structures. These 

structures include the road surface. 

• The average height in each cell is close to the real one, even if the individual particles 

have significant deviations from this height. 

• The changes in height due to motion in the scene are minor compared to the abrupt 

changes due to pitching. 

Based on these assumptions, equation (1.2.6) can be averaged for all particles located 

in cells that have valid data, and a reasonable estimate of the pitch variation between frames 

can be computed. 
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(1.2.7) 

 

After the pitch angle variation is estimated, the height phk of each particle k can be 

corrected: 

 

( )p k H p k X

p k

H

h D r D
h

D

α− ∆
=        (1.2.8) 

 

Height Weight Computation and Particle Weighting 

 

The process of particle weighting is the particle filter instantiation of the measurement 

(observation) model ( ( ) | ( ) ( ))
i k

p t t t=Z X x . This model describes the conditional probability 

density of the measurement Z(t) given a possible cell state value ( ) ( )i kt t=X x . A particle is a 

state hypothesis, and the probability of the measurement given this state will be encoded as a 

particle weight, which will describe how well the particle hypothesis matches the 

measurement data. 

The sensorial information, the raw elevation map, is just a conveniently modified 

version of the stereovision-derived 3D point data, therefore the probabilistic observation 

model will be derived from the observation model of stereovision, a three-dimensional 

normal distribution centered in the real world 3D coordinate, and having a covariance matrix 

defined by the distance error standard deviation Xσ , the lateral error standard deviation Yσ and 

the vertical error standard deviation zσ . 

The expected error standard deviations of the three coordinates computed by a stereo 

reconstruction process depend on the system’s baseline (distance between cameras) b, the 
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focal distance in pixels f, and disparity computation uncertainty (matching uncertainty) dσ . 

The stereo reconstruction process is seen as a non-linear transformation of the vector (u,v,d), 

containing a point’s position (u,v) in the image space and the disparity d, into the vector of 

3D coordinates (X,Y,Z). The error is thus computed by propagating the covariance matrix of 

(u,v,d) through the Jacobian linearization of the 3D reconstruction transformation [25].  

After the measurement uncertainties for each cell are computed, they can be 

transformed into weights that will be assigned to the particles. The measurement model is 

depicted as a Gaussian distribution centered in the true row, column and height, having the 

covariance matrix formed by the three standard deviations, rσ , cσ and hσ . 

The classical approach for particle weighting, in this situation, is to compute the 

distance from the particle’s position and height (prk, pck, phk) to the measurements (r, c, z) 

inside an acceptable search zone, and transform this distance into a probability value using 

the Gaussian equation. This approach is not computationally efficient. Instead, the process of 

Height Weight Computation creates, for each cell i in the map, a weight LUT for all possible 

heights (which are represented as integers, multiples of 1 cm, thus a LUT size of 300 

positions will accommodate all relevant heights found in the scene). 

The creation of the weight LUT is a data-driven approach, which will approximate the 

computation of weight by distance to the measurement in a more computationally efficient 

way. For each cell i, an influence region of 4 ,r iσ x4 ,c iσ around the central position (ri, ci) is 

analyzed. Each measured height z inside the search region will receive as weight the value of 

a Gaussian function Gi centered in (ri, ci), having the standard deviations ,r iσ and ,c iσ . This is a 

straightforward application of the Gaussian observation model, in the horizontal plane. 

Formally, the histogram value for a height candidate h, at coordinates (ri, ci), for the cell i, is 

computed as: 

 

, ,

, ,

2 2

2 2

( ) ( , ) ( , ) ( ( , ) )
i r i i c i

i r i i c i

r c

i i i i

r c

H h d G r c z h

σ σ

τ σ κ σ

τ κ τ κ δ τ κ

+ +

= − = −

= − − −∑ ∑    (1.2.9) 

 

In (1.2.9), d is the data availability map, and δ is the Kronecker delta function. The 

multiplication terms ( , )d τ κ and ( ( , ) )z hδ τ κ − indicate that only the valid cells in the raw map, 

having the height z equal to the height candidate h will be taken into consideration. 

The process of height LUT creation based on the available height data and the 

associated Gaussian weights is depicted in figure 1.2.5. 

 
Fig. 1.2.5. Building the height histogram for a cell. A candidate height, located inside the 

stereo uncertainty region, will have a vote weighted by the value of the 2D Gaussian kernel 

centered in the current cell. 
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According to the measurement model, the particle’s weight will depend on its 

distance to the measurement along all three coordinate axes. Equation (1.2.9) only accounts 

for the displacement in the horizontal plane. The distance between the particle’s height and 

one of the heights in the histogram Hi can be transformed into a probability value by using a 

Gaussian function. The same result can be achieved more efficiently by convolving the height 

histogram Hi with a 1D Gaussian kernel Ki, of standard deviation ,h iσ . Equation (1.2.10) 

transforms the sparse height histogram Hi into a continuous weight LUT, Wi: 

 

*i i iW K H=          (1.2.10) 

 

A particle k, in a cell i, will get the following weight: 

 

( )k i kw W h=          (1.2.11) 

 

Resampling 

The resampling process creates a new population of particles, using the current 

population and their weights. This is the process that makes the particle population reflect the 

posterior probability of the state of the scene that is tracked, a probability which is the result 

of the prediction (drift and diffusion) and of the measurement (weighting). 

Resampling is applied for each cell i, at each time instance t, after the particles are 

weighted. The total number of allowed particles for a cell is NC, a constant which is currently 

set at 200. The real number of particles in the cell, NR,i, resulted by drift and diffusion, may 

be lower than NC. For re-sampling, it is assumed that the cell holds a higher number of 

particles, NA = 1.25 NC. The difference between the real number of particles in the cell, NR,i, 

and the augmented maximum number of particles NA is the number of “empty” particles, 

particles which are in fact empty places. The re-sampling mechanism will perform the 

following steps: 

1. Weight the empty particles with a default low weight, which we chose to be the 

average value of the height weight LUT, Wi. 

2. Normalize the weights of all NA particles so that their sum becomes 1. 

3. Perform NC random extractions from the total particle population, real and empty. The 

weight of the particle controls its chances of being selected – high weight particles 

will be selected multiple times, lower weight ones may not be selected at all. If empty 

particles are selected, the final number of particles in the cell will be lower than NC. 

The resampling mechanism completely replaces the particle set at each measurement 

time t (each frame). Therefore, there is no need for particle deletion, as the particles with low 

weight (the unfit particles) will not be selected, and thus they will be automatically removed. 

This resampling algorithm differs slightly from the classical solution [23] due to the 

presence of empty particles. The effects of having empty particles are the following: 

1. If most of the real particles of a cell have a low weight due to their lack of fitness to 

the measurement data, the particle population in that cell decreases. 

2. The difference between NA and NC ensures that even if a very good fit between the 

particles and the measurement data occurs, there is always a chance to make some 

room for new particles. 

The main reason for designing the mechanism for reducing the number of particles in 

a cell, a mechanism that acts in an accelerated manner when the data does not fit the 

prediction, is the need for a mechanism to clear the way for the particles belonging to moving 

objects. If a vehicle moves across a road surface, the particles that have a low height must be 

cleared so that the particles of the moving object have a place to go. Without an accelerated 
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elimination of the unfit particles, the convergence of the particle population to the new height 

of the obstacle will be slow, and the system will not react quickly enough to a dynamic scene. 

 

Creation of New Particles 

 

If the number of particles in a cell, NR,i, is lower than NC/2, and the cell i has a valid 

height z(ri,ci) in the raw measurement map, the algorithm will create a number of NC/2-NR,i 

new particles. The speeds of the new particles will be sampled from a normal distribution 

centered in 0, and the heights will be sampled from the multi-modal distribution of height 

measurement influencing cell i, represented by the weight LUT Wi. The process of creating 

new particles is applied after each resampling step.  

 

Estimation  

 

If the particle population in a cell i is higher than a threshold that we set at 2NC/3, the 

height and speed of the cell can be estimated by averaging the values of all particles k that are 

located inside the cell, using equations (1.2.12) and (1.2.13). The operator |S| denotes the 

cardinality of a set S. The particles involved in the estimation are those generated by 

resampling, therefore the particle weights are no longer needed. 
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The estimated dynamic elevation map is then transformed into a Virtual Reality 

Modeling Language (VRML) scene [26], for visual inspection, as seen in figure 1.2.6.a and 

1.2.6..b. From the tracked elevation map one can also derive an occupancy grid, the 

occupancy probability for each cell being computed as the ratio between the number of 

particles having a height higher than a threshold T and the total number of particles in the 

cell. Figure 1.2.6.d shows the occupancy grid derived from the dynamic elevation map, for a 

sample threshold T=50 cm. 
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Fig. 1.2.6. Estimation results for the tracked scene: a) 3D rendering of the tracked elevation 

map, with speed vectors, perspective view; b) 3D rendering of the tracked elevation map, 

with speed vectors, lateral view; c) top view of the tracked map, with heights encoded as 

grayscale values; d) occupancy grid estimation from the tracked map, darker values encoding 

a higher occupancy probability. 

 

1.2.5. Experimental results 

 

Evaluation of Scene Reconstruction Accuracy 

The most important goal of an elevation map algorithm is to accurately depict the 

scene being observed. For this reason, we have to compare the computed map with a ground 

truth map, a map generated by using a sensor that is both very precise and delivers a data 

density compared to that of stereo. Luckily, the Karlsruhe Institute of Technology compiled 

the KTTI Vision Benchmark Suite [27], a large set of data consisting of grayscale and color 

image pairs, Velodyne laser points, and GPS data, all synchronized and calibrated. For the 

evaluation process, the following steps were performed: 

1. Stereo reconstruction, using our algorithms, on the rectified image pairs of the KITTI 

dataset. 

2. Raw elevation map computation, using the reconstructed stereo points. 

3. Elevation map tracking, using the raw elevation map as measurement. 

4. Raw elevation map computation, using the Velodyne points. This map is regarded as 

ground truth. 

5. Computation of the differences between the ground truth map and the raw stereo map, 

and of the differences between the ground truth map and the tracked map. The 

differences are computed only when both the ground truth and the evaluated map 

have valid heights. 

The error analysis presented in this section was done on the sequence 

2011_09_26_drive_0009, part of the raw data sequences available for download at [28]. Fig. 

1.2.7 shows a comparison between the stereo reconstructed 3D points and the laser 3D points, 

for a frame in this sequence. 
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Fig. 1.2.7. A snapshot of the evaluation sequence. a) grayscale left image; b) laser 3D points, 

top view; c) stereo 3D points, top view; d) laser 3D points, lateral view; e) stereo 3D points, 

lateral view. 

 

Based on the differences between the stereo-derived maps (raw and tracked) and the 

laser ground truth map, three types of errors are computed: 

1. The Badly Computed Heights (BCH) percent, which is the ratio between the estimated 

heights that have the absolute difference from the ground truth higher than a threshold 

T (currently 0.15 m), and the total number of heights that can be compared to the 

ground truth. 

2. The Root Mean Square Error (RMSE), an average error of height estimation 

compared to the ground truth. 

3. The Density percent, the ratio between the number of estimated cell heights and the 

total number of cells that can have a height in the raw map (the theoretically 

observable cells). 

The first two error indicators are inspired from [29], a paper which defines common 

accepted measures for evaluation of dense stereo algorithms, measures that we consider to be 

also suited for evaluation of dense elevation maps. 

 
TABLE 1.2.1.  

PERFORMANCE COMPARISON FOR HEIGHT ESTIMATION 

Elevation Map % Density % BCH RMSE (m) 

Raw Map 41.12 27.99 0.19 

Tracked Map 60.96 24.19 0.17 

 

The results are presented in Table 1.2.1. What is clearly visible is that tracking the 

elevation map provides a reduction in BCH, and in RMSE, while achieving a nearly 50% 

increase in density. This means that the tracked map is a much more complete description of 
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the scene, increasing the number of cells that have a valid height, and this increase in data 

density comes with no precision cost, but with a slight precision gain. 

The graphs in Fig. 1.2.8 show the BCH situation for different distances and heights. It 

is of no surprise that the errors increase with the distance, as this is an intrinsic property of 

stereovision. Also, the errors increase with the height being estimated, a phenomenon which 

we suggest is related in fact to distance uncertainties, a high structure being estimated at the 

wrong distance having a very large error with respect to the nearby ground. 

The graphs in Fig. 1.2.9 show the RMSE situation for different distances and heights. 

As expected, the errors go up with the distance, and with the height. 

From figures 1.2.8 and 1.2.9 it is apparent that the tracked elevation map improves the 

raw map results consistently, on almost all distances and heights. 

 
Fig. 1.2.8. Badly calculated heights (BCH) % comparison. Blue – raw map, green – tracked 

map. Top: BCH comparison per distance from the observing vehicle. Bottom: BCH 

comparison per height. 

 
Fig. 1.2.9. Root Mean Square Error (RMSE) comparison. Blue – raw map, green – tracked 

map. Top: RMSE comparison per distance from the observing vehicle. Bottom: RMSE 

comparison per height. 

 

 

 



Radu Gabriel DANESCU 

 

43 

 

Habilitation Thesis

 

Evaluation of Speed Estimation Accuracy 

In addition to a denser and more accurate estimation of the heights of the perceived 

scene, the tracked elevation map adds dynamic information to this description. For each cell 

in the map the speed vector magnitude and orientation can be estimated using the speed 

vectors of its associated particles. In order to evaluate the quality of the speed estimation, 

sequences recorded in controlled environments, with known speed of the tracked obstacles, 

are used. In what follows, an analysis of eight sequences is presented: four with the obstacle 

coming from the front at 45 degrees orientation (Fig. 1.2.10.), and four with the vehicle 

coming from behind, at the same orientation (Fig. 1.2.11.). Each scenario was repeated with 

four different speeds, 30, 40, 50 and 60 km/h. The target vehicle’s stable speed is reached 

outside of the observer’s field of view. 

Each test sequence is 2 to 5 seconds long (40 to 100 frames), and, depending on its 

speed, the vehicle is observed for 50 to 70% of the sequence’s duration. As the scene consists 

only of the test vehicle and the road, only the speed of the particles that have a height higher 

than 50 cm is analyzed. 

 

 
Fig. 1.2.10. Speed estimation test, with the target vehicle approaching at 45 degrees. a) left 

grayscale image; b) raw elevation map; c) tracked elevation map; d) tracked elevation map 

with speed vectors. 

 

 
Fig. 1.2.11. Speed estimation test, with the target vehicle receding at 45 degrees. a) left 

grayscale image; b) raw elevation map; c) tracked elevation map; d) tracked elevation map 

with speed vectors. 

 

First, a speed magnitude histogram is constructed for each frame, counting the 

number of particles for each speed value candidate, from 0 to 100 km/h. Figures 1.2.12 and 

1.2.13 show time sequences of these histograms, plotted as 3D surfaces, for the ground truth 

speeds of 30 km/h and 60 km/h (ground truth shown on the plots as the narrow vertical 

spike), on the two vehicle orientation scenarios. The speed value clustering behavior can be 

observed from these plots: as the vehicle enters the scene, the histograms become narrower 
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around the ground truth value, and then they become diffuse again as the vehicle goes out of 

the field of view (but not completely out of the map). 

 
Fig. 1.2.12. Particle speed histograms, for the incoming vehicle scenarios. Top: time 

evolution of the histograms for the 30 km/h test speed; Bottom: time evolution for the 60 

km/h test speed. 

 

 

Fig. 1.2.13. Particle speed histograms, for the receding vehicle scenarios. Left: time evolution 

of the histograms for the 30 km/h test speed; Right: time evolution for the 60 km/h test speed. 

 

From the speed histograms, an estimation of the perceived speed of the moving 

obstacle can be extracted. For the two orientation scenarios, the estimated speeds are plotted 

against the ground truth, as shown in Fig. 1.2.14 and Fig. 1.2.15. 

 

 

 
Fig. 1.2.14. Estimated object speed, for 30, 40, 50 and 60 km/h ground truth speeds, for the 

incoming vehicle scenario. 
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Fig. 1.2.15. Estimated object speed, for 30, 40, 50 and 60 km/h ground truth speeds, for the 

receding vehicle scenario. 

 

An error analysis of the speed estimation was performed per sequence, taking into 

consideration only those frames where the object was actually visible. The estimated mean 

speeds, and the root mean square errors against the ground truth, are presented in tables 1.2.2 

and 1.2.3. 
 

TABLE 1.2.2 

SPEED MEASUREMENT EVALUATION - INCOMING VEHICLE SCENARIO 

Ground truth speed (km/h) Mean estimated speed 

(km/h) 

RMSE (km/h) 

30 29.2650 1.9720 

40 38.9354 3.9316 

50 46.9964 6.5184 

60 50.0729 11.7318 

 

TABLE 1.2.3 

SPEED MEASUREMENT EVALUATION – RECEDING VEHICLE SCENARIO 

Ground truth speed (km/h) Mean estimated speed 

(km/h) 

RMSE (km/h) 

30 29.6231 1.6149 

40 37.8779 2.6842 

50 45.2310 4.9515 
60 53.1327 8.2875 

 

The graphs in figures 1.2.14 and 1.2.15, and tables 1.2.2 and 1.2.3, show that the 

elevation map tracking algorithm can reliably estimate the speeds of moving objects. The 

error of speed estimation increases with the speed of the target object, a behavior which is to 

be expected, as a higher speed of the object means a higher deviation from the initial average 

zero speed of the cell (when a cell is first populated with particles, they receive random 

values from a probability distribution of zero mean). The process of drift and resampling will 

gradually remove the wrong speeds, and multiply the correct ones, but this is not an 

instantaneous process. Another reason for higher errors at higher speeds is that the faster 

moving object is observed for a smaller period of time, meaning that the speed stable time in 

the graph is lower with respect to the transitional times. 
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Qualitative Evaluation 

The elevation map tracking system has been tested on multiple sequences of real 

traffic scenes, acquired in Cluj-Napoca, Romania. The resulted 3D models of the perceived 

environment were compared to the acquired images, as we looked for: likeness of the resulted 

model to the real scene, speed vectors orientation and rough magnitude, describing the 

general motion characteristics of the objects in the scene, density of estimation, obvious 

errors. The system proved to be able to handle the complex traffic scenes in a robust manner, 

increasing the quality of the height perception of the raw stereo-derived elevation map. In 

figures 1.2.16, 1.2.17 and 1.2.18 some of the observed scenes are illustrated. 

A high resolution video file, showing the system’s behavior for a two minutes driving 

sequence can be accessed at [30]. 

 
Fig. 1.2.16. Large, continuous static structures. a) left grayscale image; b) raw map, intensity 

encoding for height; c) tracked map, intensity encoded for height; d) occupancy grid 

estimation; e) raw map, 3D visualization, perspective view; f) raw map, 3D lateral view; g) 

tracked map, 3D perspective view; h) tracked map, 3D lateral view. 

 

 
Fig. 1.2.17. Pedestrian tracking, with estimated speed vectors. a) left grayscale image; b) raw 

map, intensity encoding for height; c) tracked map, intensity encoded for height; d) 

occupancy grid estimation; e) raw map, 3D visualization, perspective view; f) raw map, 3D 

lateral view; g) tracked map, 3D perspective view; h) tracked map, 3D lateral view. 
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Fig. 1.2.18. Tracking vehicles at an intersection. a) left grayscale image; b) raw map, 

intensity encoding for height; c) tracked map, intensity encoded for height; d) occupancy grid 

estimation; e) raw map, 3D visualization, perspective view; f) raw map, 3D lateral view; g) 

tracked map, 3D perspective view; h) tracked map, 3D lateral view. 

 

 
Fig. 1.2.19. Cuboid-based world perception (top) versus dynamic elevation map based 

perception at a roundabout (bottom). 

 

Fig. 1.2.19 shows a comparison between the classical cuboid-based representation of 

the environment and the perception based on the proposed particle-based dynamic elevation 

map, in a situation extremely relevant for driving assistance – navigating a roundabout. One 

can see that the curved nature and the low height of the roundabout are not faithfully 

described by the oriented boxes, while the dynamic elevation map describes the environment 

geometry accurately. 

1.2.6. Comparison of World Modeling Techniques 

 

While the classic representation of the obstacles as 3D oriented objects remains the 

most popular choice for the environment perception systems, especially in the field of driving 

assistance, various alternatives have been proposed in the recent years, aiming to increase the 

flexibility of the representation of the environment and the level of perceived detail. 

The proposed method is a completely dynamic probabilistic elevation map, having 

multi-modal probability density of the cell states. Table 1.2.4 presents a non-exhaustive 

comparison with existing environment description methods, in terms of flexibility (the 

capability of describing free-form obstacle areas as seen from the bird-eye view), speed 

estimation capability, density (in the bird-eye view space) and height estimation capability. 

The table shows that the dynamic elevation map combines the advantages of the elevation 
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map with those of the dynamic occupancy grid, being the most faithful reproduction of the 

real world. 

 
TABLE 1.2.4 

COMPARISON OF THE DYNAMIC ELEVATION MAP WITH OTHER ENVIRONMENT MODELING METHODS 

Method Flexible shape description Speed estimation Density Height estimation 

Oriented boxes [31] No Yes Low Yes 

Elevation map [18][19] Yes No High Yes 

Dynamic occupancy grid[17][32] Yes Yes High No 

6D vision [33] Yes Yes Low Yes 

Dynamic stixel [5] Yes Yes Low Yes 

Dynamic elevation map Yes Yes High Yes 

 

1.2.7. Conclusion 

 

This section describes an elegant environment modeling and tracking technique, the 

particle-based dynamic elevation map. The building block of the proposed model is the 

dynamic particle, having position, speed, and height, which can populate the grid cells, can 

migrate between cells, and can be created, multiplied, and destroyed based on the 

measurement data. Using the particle set, an elegant, intuitive and easily adaptable system 

was designed to solve the non-parametric PDF Bayesian tracking problem for a dynamic 

digital elevation map.  

The proposed method unifies the dynamic cell-based world tracking specific to 

occupancy grids, with the power of 3D representation of elevation maps. While other 

contributions described in the literature combine these two types of representation, the system 

presented in this paper is able to track dynamic elevation maps directly, in a uniform manner, 

without discriminating between empty cell, occupied cell, static cell or dynamic cell. The 

dynamic elevation map is a general dynamic 3D world representation, which can easily be 

transformed into less general ones, such as the classic elevation map, or the dynamic 

occupancy grid.  

The particle-based dynamic elevation map and the dynamic environment tracking 

algorithm based on this model form a generic intermediate level perception system, capable 

of enhancing the performance of the dense stereovision through improving its accuracy and 

density, and providing speed information for the elements of the scene. A better generic 3D 

description of the 3D environment can be applied to better extract the road surface for the 

purpose of lane detection, to better identify the static and the dynamic obstacles for detection, 

tracking and classification, or to provide a detailed 3D map of the environment. 

 

1.3. The gray level enhanced dynamic elevation map 
 

1.3.1. Introduction 

 

Based on the previous results for a generic 3D dynamic world modeling and tracking, 

described in sections 1.1. and 1.2, an even more detailed description of the world is proposed, 

a description that includes, besides the 3D information obtained from stereovision, the image 

information as well. This new model is a particle-based, gray level enhanced dynamic 

elevation map. This experimental method for world modeling and tracking is another step 

towards the greater goal of having a generic world model and perception technique, able to 

rely on as much sensorial information as possible to infer a highly accurate depiction of the 

real dynamic 3D scene. 
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In the following sub-sections, only the relevant changes from the technique described 

in 1.2 are presented, along with the experimental results. 

1.3.2. The graylevel dynamic elevation map world model 

 

Assuming the coordinate system with the origin on the ground in front of the host 

vehicle, the X axis pointing forward, Y axis pointing to the right, and Z axis pointing up, the 

horizontal plane XOY is divided into cells of 20 cm x 20 cm, each cell i being identified by a 

row coordinate ri and a column coordinate ci. Each cell has an associated height value hi, and 

a gray level value gi. Also, since the 3D scene we want to model is dynamic, each cell has an 

assigned speed vector, which we’ll confine to the horizontal plane, and therefore it will have 

two components, for the X and Y axes, or, in terms of rows and columns, vr,i(ri,ci) and 

vc,i(ri,ci) – the row speed and the column speed for each cell i in the map (Fig. 1.3.1). 

Each cell i in the dynamic gray level elevation map can be described by four values, 

hi, gi, vr,i and vc,i. Due to the fact that perfect sensing of a real traffic scene is impossible, one 

cannot have exact knowledge of these values. These limitations lead to uncertainties, which 

have to be included in the world model as probability densities. 

A cell i in the dynamic elevation map is associated to a four-dimensional random 

variable T

iciriii vvgh ),,,( ,,=X . The objective of the tracking algorithm is to compute the 

probability density of Xi, for each cell i in the map, based on a sequence of measurements 

Z(0)…Z(t), t being the current observation time. 

 

Fig. 1.3.1. The dynamic, gray level elevation map. 
 

The dynamic elevation map will be described, at time t, by a set of particles 

S(t)={xk(t) | xk(t)=(ck(t), rk(t), hk(t), gk(t), vc,k(t), vr,k(t))
T
, k=1…NS(t)}, each particle k being 

located in the 2D grid, in the cell having the row rk, and the column ck. 

1.3.3. The measurement data 

 

The dense stereovision data is transformed into a raw elevation map. A detailed 

description of the process can be found in [10]. The raw map is described by three 2D arrays: 

- Measured height of each cell, denoted by zi(ri,ci); 

- Measured gray level of each cell, denoted by bi(ri,ci). The gray level of a map cell is 

found by transforming the row, column and height coordinates of the raw height map 

into XYZ coordinates, and projecting them into the left image plane.  

- Data availability for each cell, denoted by di(ri,ci). di(ri,ci)=1 means height for this cell 

is available, and di(ri,ci)=0 means that no measurement data is available for cell i. 

A cell may have no valid measured height due to the fact that the stereovision engine 

may not be able to provide a 3D value for all areas in the image, or due to occlusions and 

field of view limitations. The tracking algorithm is made aware of this situation by di(ri,ci). If 

the cell has no measured height, we’ll assume that it has no measured gray level, either.  
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Fig. 1.3.2. Original grayscale left image (top, left), stereo-reconstructed 3D points (bottom, 

left), and the raw elevation map enhanced with gray level information (right). 
 

1.3.4. Weighting the particles 
 

A method for transforming the raw elevation information into particle weights, taking 

into account the stereo uncertainties along all three coordinate axes, is described in section 

1.2. The same reasoning can be applied for the measured gray values b(r, c), to create a 

weight histogram Gi, for each candidate gray level g, using equation (1.3.1): 
 

2 2

2 2

( ) ( , ) ( , ) ( ( , ) )
i r i c

i r i c

r c

i i i i

r c

G g d r c b g
σ σ

τ σ κ σ

τ κ τ κ δ τ κ
+ +

= − = −

= Γ − − −∑ ∑
   (1.3.1) 

 

In order to account for the uncertainty in gray level estimation, the gray level 

histogram Gi will be convolved with a Gaussian kernel KG,i, of standard deviation )(iGσ , 

accounting for the uncertainty of gray level estimation (this includes uneven lighting, 

reflections, etc), obtaining the weight LUT for particle’s gray levels, WG,i. 

 

iiGiG GKW *,, =          (1.3.2) 

 

Using the weight LUT’s for height, WH,i and for gray level, WG,i, the weights of the 

particles can be easily computed. A particle k, in a cell i, will get the following weight: 

 

)()( ,, kiGkiHk gWhWw =        (1.3.3) 

 

After weighting, the resampling process follows the same steps that are described in 

section 1.2. After resampling, the speed, height and gray level are estimated for each cell. 

 

1.3.5. Experimental results 

 

In order to assess the world modeling and tracking capabilities of the proposed 

solution, multiple sequences acquired in the urban traffic of Cluj-Napoca, Romania, were 

used. In the absence of a definite ground truth, a subjective evaluation of how well the 
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tracking system was able to provide a virtual 3D representation of the perceived environment 

is made, in comparison with the raw map used as measurement. Some results are shown in 

Fig. 1.3.3. The tracking system was able to considerably improve the density of the raw map, 

to filter out the reconstruction errors, especially in the case of the road surface and to 

correctly identify the moving elements in the scene and their direction of motion. 
 

 
a.1.     a.2.    a.3.    a.4. 

 
b.1.     b.2.    b.3.    b.4. 

 
c.1.     c.2.    c.3.    c.4. 

Fig. 1.3.3. Qualitative results in real urban traffic scenarios: a.1.-a.4, original grayscale 

image; b.1.-b.4, raw elevation map with grayscale information; c.1.-c.4, tracked dynamic 

elevation map. 

 

1.3.6. Conclusion 

 

This section describes a flexible, experimental method for modeling and tracking 

complex 3D environments - the particle-based dynamic elevation map enhanced with gray 

level information. The central element of the solution is the dynamic particle, having 

position, height, speed and gray value, which can migrate from one map cell to another. A 

particle population in a cell is a multi-modal probability density approximation for a 4-

dimensional state space, an approximation that is updated by controlling the particle 

population using the cues obtained from measurement. The preliminary results show a system 

capable of reliably estimating the 3D static and dynamic characteristics of the observed 

traffic scenes, able to significantly increase the density and accuracy of the raw, stereovision-

extracted elevation map, and to add dynamic information for each map cell. 
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2. Large baseline stereovision for space surveillance 
 

2.1. Large baseline stereovision system for surveillance of the MEO orbits and 

beyond 

 

2.1.1. Introduction – related work 

 

This chapter presents methods for detecting and ranging Earth orbiting objects based 

on large baseline stereovision. While optical solutions have long been around for observing 

space and surveying the Earth’s orbit, stereovision has not been, so far, exploited for this 

task. 

The space around the Earth is filled with man-made objects, which orbit the planet at 

altitudes ranging from hundreds of kilometers to tens of thousands kilometers. Many of these 

objects are useful: communication, navigation, military, or scientific satellites. Other objects 

are not so useful, and their increased number becomes a threat to the safety of space 

operations, space travel, or even for the planet’s surface, as many of these objects will, one 

day, come back to Earth. These objects are also known as Space Debris (SD). Keeping an eye 

on all objects in Earth’s orbit, useful and not useful, operational or not, is known as Space 

Surveillance, an activity that includes detection, tracking and propagation of orbital 

parameters of the space objects, followed by cataloguing and analysis. Detailed surveys on 

the problem of space debris  and space surveillance are found in [35] and [36]. 

According to Inter-Agency Space Debris Coordination Committee (IADC) [37], the 

space objects are categorized according to the altitude of their orbits in the following three 

categories: Low Earth Orbit (LEO) for an altitude below 1 500 km, Medium Earth Orbit 

(MEO) at an altitude of around 20 000 km, and Geostationary Earth Orbit (GEO), also 

sometimes called the Clarke orbit, at an altitude of 36 000 km. The Geostationary Earth Orbit 

and the orbits of higher altitude, such as those of the Molniya and Tundra satellites, are also 

known as High Earth Orbits (HEO). Another way of classifying orbits is this:  Low Earth 

orbit starts just above the top of the atmosphere, while high Earth orbit begins about one tenth 

of the way to the moon [38]. In [39] the satellites are classified as LEO (altitude less than 

2000 km), MEO (altitude between 2000 km and 34000 km), GEO (altitude between 34000 

km and 38000 km), and the Remaining Earth Orbit (REO), having the altitude higher than 

38000 km. 

The MEO orbit is used mainly by the navigation satellites (GPS, Glonass, Galileo), 

and by the communication satellites covering the North and South poles. There is no 

consensus about a MEO protected region [40]. The GEO protected region, defined by the 

IADC Coordinating Committee, includes the spherical shell centered on geostationary 

altitude with extent 200 km above and below this altitude and with inclination limits of +15 

to – 15 degrees. While operations are usually conducted within about 75 km of geostationary 

altitude, the GEO protected region is extended in altitude to create a maneuver corridor for 

relocating spacecraft. Around 390 operational satellites orbit this protected zone, most of 

them providing telecommunication, broadcasting and meteorological services [41].  

Several catalogs were created and continuously updated through time in order to help 

and improve the monitoring process of the space objects. The entity which maintains the 

most comprehensive catalog of satellite orbital data is the U.S. Space Surveillance Network 

(SSN) [42]. Other significant organizations that catalog debris and satellites are NASA, the 

Russian Space Surveillance System (RSSS) and the Air Forces from few countries (notably 
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France, Germany, UK and Canada). A future significant contribution is expected in this sense 

from the ESA surveillance of space system which is actually in an early development phase 

[9]. 

The systems that are used nowadays for sky surveillance involve varied systems such 

as radars, optical telescopes and laser ranging systems [35]. Radar systems are successfully 

used for Low Earth Orbiting objects (LEO) providing range measurements with high 

accuracy and, unlike optical systems, they are not sensitive to the meteorological conditions. 

Still, a great limitation is that they are less accurate for higher orbits. Radar suffers from 1/R
4
 

signal power losses between signal transmission, reflection and reception, making detection 

of distant deep space spacecraft difficult. Another problem is that a radar dish able to detect 

such long range objects has a very small field of view (<0.20
o
) and the probability to detect 

an unknown fast moving object is insignificant. 

Optical telescope systems have been employed successfully for many years to detect 

deep-space satellites, as they detect reflected sunlight, and therefore no active illumination is 

necessary for the telescope to see its target. Adding to their high performance, the optical 

systems are cheap and easy to set up. Moreover, the acquired data can be extensively 

analyzed with image processing and pattern recognition algorithms, in order to detect and 

track the objects of interest in real time. The main limitation is that optical systems can only 

operate at night, and need clear skies to acquire accurate observations. Also, the closer to 

Earth the orbits are (the case of LEO and MEO objects), the more difficult they are to detect, 

since they appear as fast moving objects and their background changes considerably between 

frames. The higher orbits (GEO, Molniya) have a significantly lower speed, being visible for 

a longer period of time in the same restricted area of the sky.  

The most known ground-based optical Space Surveillance systems are the following: 

Ground Based-Electro-Optical Deep Space Surveillance - GEODSS [44] (for GEO 

and HEO objects) is a system of telescopes that is able to track objects as small as a 

basketball, orbiting the Earth at distances beyond the geosynchronous orbit. This system 

produces 70% of all geosynchronous tracks and 50% of all deep space tracks, tracking over 

200 objects not tracked by any other sensor. 

Space Surveillance Telescope [45], [46] (GEO, HEO, other deep space objects) is a 

ground-based system using the latest in optical technology to increase the Space Situation 

Awareness (SSA) capability. The SST program is a DARPA technology demonstration based 

on a 3.5 meter f/1.0 telescope, which was started in 2002, and successfully demonstrated in 

2012. 

The ESA Space Debris Telescope [47], designed mostly for GEO objects, operates a 

Ritchey-Chrétien telescope of 1 m aperture and 0.7 degrees field of view, located in Tenerife, 

to detect and follow objects of  at least 15 cm in diameter at GEO altitudes (assuming an 

object albedo of 0.1). The ESA Space Debris Telescope (ESA SDT) covers a sector of 120 

degrees of the GEO ring. Further plans by ESA include a space-based orbital debris 

surveillance system, able to detect much smaller objects, whose specifications are presented 

in [48]. 

ROSACE [49] is a GEO and near GEO object tracking system based on a Newton 

type telescope of 50 cm aperture, able to observe objects up to 19 units of visual magnitude.  

The Passive Imaging Metric Sensor (PIMS) Telescopes [50] is an optical system for 

the surveillance of the GEO orbits and the deep space region, operated by the United 

Kingdom Ministry of Defense. PIMS telescopes are located in UK, Gibraltar, and Cyprus. 

The three sensors cover 165 degrees of the GEO ring. The PIMS system can detect GEO 

objects down to 1 m diameter, with position accuracy better than 10 µrad. 

The Zimmerwald Telescope [50] is a system for tracking objects in the GEO ring, 

operated by the Astronomical University of Berne (AIUB), based on a Cassegrain telescope 
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with an aperture of 1 m. The sensor can cover a sector of 100 degrees of the GEO ring. 

Images are taken with a CCD chip of 2048x2048 pixels, with sensitivity up to 20 mag. The 

Zimmerwald telescope was used as a test site for validating procedures and processing 

algorithms of the ESA Space Debris Telescope. 

While most existing systems are focused on increasing the sensitivity by employing 

powerful telescopes, with narrow field of views, Space Insight’s Starbrook system [51] 

covers a very large field of view (100 x 60 degrees) by robotic scanning, in the pursuit of 

MEO objects. This system employs a fast optical system with only 10 cm aperture and a 10 

megapixel CCD, and relies on automatic processing for identifying potential targets. 

Starbrook is actually hosted at a UK facility in Cyprus and services several UK governmental 

programs. 

The large sky area that needs to be covered in the process of Space Surveillance and 

the large number of resident space objects that need to be detected, tracked and identified 

requires automatic processing of the acquired images. A comparative study of four different 

methods for detection of GEO objects from CCD images is presented by Yanagisawa et al. in 

[52].  

The first method is a PC based stacking method that needs around forty CCD images 

to detect an object. Sub-images from consecutive frames that contain the presumed space 

object in exactly the same sub-image coordinates are used to create a median image. Doing 

so, the stars from the background are eliminated in the median image, due to the object 

velocity, while the space object will be emphasized. This method was able to detect several 

new asteroids, proving thus its effectiveness. Still, the main weakness of this method is the 

computational time, since it is required to process a high number of frames, and for each 

presumed object, there are several likely paths that must be taken into account and checked. 

This method is effective for known (catalogued) objects, when object’s path can be predicted. 

The second method is also based on stacking, sped up by using an FPGA 

implementation and by reducing the image complexity through a binarization pre-processing 

step. The computational time is therefore reduced to about one thousandth of the time 

required by the PC based stacking method.  

The third method is a line identifying technique, which identifies the moving objects 

under the assumption that the pixels from consecutive frames, belonging to the same object, 

should fit a straight line. This method also requires multiple CCD frames for object detection.  

The multi-pass multi-period (MPMP) is the fourth method, which uses the average 

instead of median, reducing thus the analysis time. The authors conclude that each method 

has its strength and weaknesses, and propose a hybrid approach for an efficient surveillance 

network, relying on FPGA stacking or MPMP for detection of low speed objects, on line 

identification for detecting fast moving objects, and on PC stacking for following objects of 

known trajectory, where the search area is very small.  

Levesque et al. present in [53], [54] an approach for satellite detection which relies on 

the property that a moving satellite will be recorded as a linear streak in a long exposure 

image. The method assumes that the orbital parameters of the satellite are approximately 

known. A matched filter is used for streak detection, requiring a detailed image analysis and 

several image preprocessing steps, including the correction of sensor artifacts such as dead 

pixels or image noise and the removal of the star bleeding or other signal degradation. Then, 

all the non-streak objects in the image (e.g., stars) are removed based on their morphological 

characteristics, thus reducing the number of possible candidates. The satellite streak detection 

is finally performed based on matched filters. Since the orientation and an estimative position 

of the satellite are known, the filter will emphasize the streak intensity and establish the real 

position of the satellite. 



Radu Gabriel DANESCU 

 

55 

 

Habilitation Thesis

An improvement of this method is further proposed by Lévesque and Lelièvre in [55]. 

This new approach consists in extracting every possible object candidate and then eliminating 

the false positives through a set of rules based on object features. The rules were made based 

on a quantification of the object features such as the signal-to-noise ratio and the moments of 

inertia. Simulated images, generated with controlled parameters were used to establish the 

best thresholds for satellite streaks detection. A highly precise detection was also confirmed 

on real images, even in the case of very faint satellite streaks.  

Stoeveken and Schildknecht discuss in [56] several methods of space debris 

identification in CCD images, also taking into consideration the differences between 

observation strategies (star tracking, target tracking or fixed orientation). The authors 

highlight the importance of star removal in the image based on coordinates extracted from a 

star catalogue, the possibility of using the median image for background subtraction, the 

identification of the relevant object based on specific properties (e.g., linear streak), the need 

for reduction of false positives caused by cosmic rays or sensor pixel errors, and the speedup 

in processing possible by predicting the trajectories of the objects of interest in consecutive 

frames.  

After the orbiting object is detected in the acquired images, its orbital parameters can 

be computed. The classical approach for orbit computation is the method of Gauss, which 

requires three observations of the same object, at different moments in time. Milani et al. 

propose in [57] a new algorithm for orbit determination, based on the first integrals of the 

Kepler problem, which requires only two detections at different passes of the target object. 

The authors emphasize the need for accurate correlation between different observations of the 

same object, and propose sophisticated solutions for solving this problem in the case of high 

observation datasets.  

 

2.1.2. Overview of the contributions in stereovision-based space surveillance 

 

This work presents original, stereovision based solutions for space surveillance, able 

to detect and range Earth orbiting objects in the LEO, MEO, GEO and HEO regions. From 

two known locations, set up 37 km apart, synchronized images are acquired using optics 

adapted to the orbit type (wide angle lenses for LEO objects, and 750 mm focal length 

telescopes for MEO and beyond). The intrinsic camera parameters are calibrated offline, and 

so are the translation vectors, which are computed from highly accurate GPS coordinates of 

the observation locations. The rotation matrices of the two cameras are calibrated for each 

frame, due to the fact that the Earth’s rotation forces us to use an equatorial mount tracker 

that keeps the stars position fixed in the image. The orbiting objects are detected in two ways 

– either by their characteristic motion which causes a signature streak, if the object is not too 

far away, or by the parallax effect which causes their position to differ in the stereo image 

pair. Stereo correspondence is aided by the epipolar geometry, and is followed by 

triangulation for 3D position reconstruction. 

 

2.1.3. The sensorial systems 

 

For LEO orbit surveillance, the large baseline stereovision system is composed of two 

identical observation stations, each station having the following components: 

- “Wide-angle” objective with a focal distance of 20mm, sigma EX 20mm F1.8 

DG RF aspherical type [58]. 

- DSLR Camera, type Canon EOS 50D, with a CMOS APS-C chip (22.3mm x 

14.9mm, 4572 x 3168 pixels, in color) [59];  
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- Equatorial tracking mount, type Celestron CG5 [60]. 

- Laptop computer equipped with a custom USB to TTL interface for camera 

triggering. The triggering is done using the cable remote interface of the 

camera. 

- GPS Time Receiver for time synchronization and measurement of the 

observer’s location. 

For the MEO orbits and beyond, the wide angle lens is replaced by a C6-NGT 

Telescope (Newtonian Reflector, D=150 mm, F=750 mm) [60]. The DSLR camera is 

connected to the telescope, which becomes the camera’s objective. 

 

 
Fig. 2.1.1. Detail of the individual sensor, LEO observation mode. The equatorial mount 

supports the telescope, the camera and the lens. For MEO and beyond, the camera is attached 

to the telescope. 

 

 
Fig. 2.1.2. Architecture of the stereoscope. The computer 2 controls through the custom USB 

to TTL interface the triggering sequence for the camera 1. GPS Time Receiver 3 delivered 

time signals for synchronization. 

2.1.4. System synchronization 

 

Stereovision requires synchronized image acquisition from the two cameras. In a 

classical stereo system the synchronization is achieved by triggering the cameras by a 

common signal. However, this solution cannot be applied when the cameras are 37 

kilometers apart. Thus, two independent units that can generate triggering signals at the same 

time are needed, without a physical connection between them. Each unit has a schedule list of 

triggering times, and if the units have a common schedule, the triggering signals will be 

simultaneous. Unfortunately, working with a schedule means assuming that the two 
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synchronization units have a precise internal time, which is an assumption that for a common 

laptop PC is not true. Even if the internal clocks are precisely synchronized, they will quickly 

fall out of sync. 

In the absence of a precise time base, some external signal to keep the two units in 

sync is required.  This signal is the GPS radio signal, which is received simultaneously, once 

a second, all over the world. Each unit receives this signal with the help of a GPS receiver, 

connected to the PC. The following algorithm shows the operation of a unit, based on GPS 

reception. 

 
While (NotEmpty ScheduleList) 

TriggerTime = ScheduleList.CurrentTime() 

GPSTime = GPSReceiver.GetTimeNonBlocking() 

If (TriggerTime-GPSTime < 2 s) 

 While (GPSTime < TriggerTime) 

  GPSTime=GPSReceiver.GetTimeBlocking() 

 End While 
 Camera.Trigger() 

ScheduleList.NextTime() 

End If 

End While 

 

The unit reads the current triggering time from the ScheduleList. The current global 

time is polled through the method GPSReceiver.GetTimeNonBlocking(), which will deliver 

the most recent timestamp of a GPS reception, without blocking the execution of the 

program. If the global time is close to the triggering time, the program goes in the blocking 

mode. The GPS receiver is queried by GPSReceiver.GetTimeBlocking(), a function that will 

exit only when a fresh signal is received. In this way, there will be a minimum delay between 

the reception of the signal and the triggering of the camera, if the received time is the one 

matching the schedule list. 

 

2.1.5. The coordinate system and the camera parameters 

 

In order to represent the position of the detected objects, a coordinate system whose 

origin is located in the centre of the Earth, and its coordinate axes are fixed in relation to our 

planet was chosen. Such a coordinate system is ECEF (Earth Centered, Earth Fixed), whose 

OZ axis is the Earth’s axis of rotation, pointing to the North Pole, the OX axis joins the centre 

of the Earth with the point on the surface that has zero latitude and longitude, and OY is 

perpendicular to the XOZ plane. The equatorial plane is identical to plane XOY, and the zero 

meridian plane is XOZ. 

In stereovision terms, the ECEF coordinate system will be referred to as the World 

Coordinate System, WC. The two cameras that will observe the sky will have their own 

coordinate systems, the left camera system centered in CL and having the axes XLYLZL, and 

the right camera system centered in CR, and having the axes XRYRZR. The left image plane 

will be parallel to the plane XLCLYL, and the right image plane will be parallel to XRCRYR. 
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Fig. 2.1.3. The world and camera coordinate systems. 

 

The stereovision process relies on accurate triangulation of corresponding features 

from the left and right camera images. For this reason, the correspondence between the pixel 

position and the 3D world must be accurately described by the cameras’ parameters. There 

are two types of parameters, intrinsic and extrinsic.  

The extrinsic parameters describe the relation between the coordinate systems of the 

cameras and the world coordinate system. For each camera, there is a translation vector, 

which describes the position of the camera’s optical center in the world coordinate system. 

These vectors will be denoted by TCL and TCR. Conversely, one can express the position of 

the world coordinate system’s origin in the cameras’ coordinate systems. These translation 

vectors are denoted TWL for the left camera, and TWR for the right camera. 

The orientations of the camera coordinate systems with respect to the world 

coordinate system are described by the rotation matrices of the two cameras, RCL and RCR. 

Using the translation vectors and the rotation matrices, one can perform coordinate 

transformations between the world and camera coordinate systems, for any 3D point. 

The specific characteristics of a camera plus lens optical system are described by the 

intrinsic camera parameters (in what follows, the word “camera” will denote the whole 

camera-lens assembly). For each camera, there are the following intrinsic parameters: 

- Focal length, measured in pixels, which is the distance from the optical centre 

to the image plane. Each camera has its own focal length: fL for the left 

camera, and fR for the right camera. 

- Position of the principal point, measured in pixels, represents the intersection 

of the optical axis of the camera and the image plane. For the left camera, the 

principal point is ='

LC  (xCL,yCL), and for the right camera ='

RC  (xCR,yCR). 

- The distortion coefficients are also included in the intrinsic parameter set. The 

image distortions are caused by the difference between the ideal pinhole 

camera model and the real camera and lens assembly. These distortions can be 

usually modeled by a radial component and a tangential component. 

 

2.1.6. Calibration of the intrinsic camera parameters 

 

For the LEO observation setup, the camera lens is a common wide field of view lens, 

suitable for calibration with the well known toolboxes. The intrinsic calibration is performed 

using the Bouguet method, available through the Caltech Camera Calibration Toolbox [14]. 



Radu Gabriel DANESCU 

 

59 

 

Habilitation Thesis

The intrinsic calibration process provides the position of the principal point, the focal length, 

and the distortion coefficients for each camera. For a wide FOV lens, the distortion 

coefficients are significant, and cannot be neglected. Therefore, a routine for compensating 

this distortion is executed for each captured frame. 

For the MEO, GEO and HEO observation setup, the lens is replaced by a narrow field 

of view telescope. Due to the fact that the telescope’s field of view is extremely narrow 

compared to regular photographic lenses (less than 2 degrees), the radial distortions are 

expected to be negligible. Another assumption is that the position of the principal point is not 

crucial in calibration, as any deviation from the true position of this point will be equivalent 

to a rotation of the scene with respect to the camera [28], and therefore can be compensated 

by the extrinsic calibration of the rotation matrix. The validity of both assumptions is proven 

by experimental results. 

Thus, the only intrinsic parameters that must be calibrated are the focal distances: fL 

for the left camera, and fR for the right camera. 

Given a pair of stars i and j, of known celestial coordinates and known position in the 

image plane, the focal distance of the camera, expressed in pixels, is: 

 

[ ]
( , ) ( , )

( , )
tan ( , ) ( , )

l i j l i j
f i j

i j i jθ θ
= ≅

       (2.1.1) 

 

The term l(i, j) denotes the distance in pixels between the image position of the two 

stars, (xi, yi) and (xj, yj): 

 

2 2( , ) ( ) ( )
i j i j

l i j x x y y= − + −
      (2.1.2) 

 

The term ),( jiθ , expressed in radians, is the angular distance between the two stars. 

As the stars are catalogued based on their equatorial coordinates Right Ascension (RA) and 

declination (DEC), which are angular coordinates in a spherical coordinate system centered 

on Earth, the angular distance between stars i and j can be computed in spherical triangle by 

the cosine formula [28]: 

 

( )1( , ) cos sin( ) sin( ) cos( ) cos( ) cos( )
i j i j i j

i j DEC DEC DEC DEC RA RAθ −= + −

            (2.1.3) 

The equatorial coordinates of the stars selected for calibration of the two optical 

systems, and an example of their corresponding position in the left and right image, are 

shown in Table 2.1.1. The position of these stars in the right image of the stereo pair is shown 

in figure 2.1.4. The stars used for calibration are identified manually from the image, and the 

equatorial coordinates of these stars are extracted from a star catalog [64]. While this process 

may be time consuming, it must be done only once for each instrument, as the intrinsic 

parameters do not change during the system operation. 
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Table 2.1.1. Reference stars used for intrinsic calibration of the cameras. 

 
 

Equatorial coordinates of the reference stars (epoch 2012.809) Left (Feleacu) 

image position 

Right (Marisel) 

image position Star 

Id. 

Right Ascension, RA Declination (Dec) 

Nr. Hours Minutes Seconds Degrees Minutes Seconds x y x y 

1 1 7 59.992 30 27 15.523 897.5 637.7 871.8 643.3 

2 1 9 18.150 30 23 40.995 1291.5 569.9 1270.6 611.6 

3 1 9 34.288 30 32 23.706 1364.1 775.1 1324.3 822.8 

4 1 8 43.397 30 44 32.087 1099.1 1046.7 1035.4 1069.2 

5 1 7 24.985 30 15 35.513 732.1 360.9 732.4 352.5 

6 1 10 0.519 30 8 29.159 1517.9 226.3 1527.5 289.7 

7 1 11 27.523 30 35 21.669 1926.1 867.9 1876.3 966.5 

8 1 7 11.636 30 41 28.684 644.1 959.1 590.2 940.3 

9 1 6 4.526 30 18 59.142 326.7 426.1 322.4 380.1 

10 1 11 17.184 30 4 40.327 1905.9 154.5 1921.0 253.4 

11 1 11 35.434 30 52 12.624 1947.9 1260.5 1862.2 1359.6 

12 1 6 18.646 31 1 21.167 364.9 1410.7 270.4 1365.2 

13 1 8 35.059 30 28 23.732 1071.7 670.7 1042.5 692.1 

14 1 9 12.212 30 26 55.228 1258.9 643.7 1231.3 682.3 

15 1 10 19.527 30 41 4.653 1581.3 986.1 1521.8 1052.6 

16 1 8 24.909 30 42 15.088 1008.9 990.3 950.7 1004.7 

17 1 7 37.711 30 8 36.944 801.7 201.7 816.2 200.0 

18 1 10 14.566 30 7 9.281 1589.5 198.5 1601.6 268.5 

19 1 10 22.933 30 52 44.634 1586.7 1257.1 1502.5 1323.5 

20 1 9 6.691 30 53 24.458 1207.1 1257.3 1123.9 1288.9 

21 1 6 12.019 30 33 35.802 352.9 766.3 317.5 721.4 

22 1 11 38.345 30 17 45.807 1998.5 462.5 1985.4 568.9 

23 1 12 19.396 30 33 35.771 2186.7 838.9 2138.3 960.9 

24 1 6 25.726 30 53 7.029 406.1 1221.3 329.0 1179.8 
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Fig. 2.1.4. Reference stars used for internal calibration - position on the Marisel image. 

 

 
Fig. 2.1.5. Focal distances computed from all star pairs, and the median value (Marisel). 

 

Each pair of stars can be used for focal distance computation. By analyzing all pairs 

that can be formed with the available reference stars, the calibration system obtains a set of 

candidate focal lengths, as shown in figure 2.1.5. For the final focal distance estimation, one 

can use the mean of these values, or the median. For our example, the focal distance obtained 

using the median is f=79839.60 pixels, and using the average the value obtained is 

f=79841.47. The standard deviation of the focal value candidates list is 22.71 pixels, which 

means that no significant outliers exist, a fact that is confirmed by the good agreement 

between the two estimated focal values. For comparison, a focal length value of 79837.02 

pixels was obtained using a complex astrometrical reduction process, implemented in the 

AIP4Win software package [62]. This indicates that the proposed calibration method is 

reliable and accurate, and the assumptions we relied on are valid. 

As seen from figure 2.1.5, the vast majority of the candidates are between the values 

of 79800 and 79900 pixels. If we take a point on the image that has a 1000 pixels distance 
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from the image center, the angle between the optical ray passing through this point and the 

optical axis of the camera would be around 0.01253 radians (43 minutes of arc), assuming a 

focal length of 79800. Transforming this angle back into pixel distance, assuming the other 

extreme of the focal distance range, 79900, gives us a value of 1001 pixels. Thus, even with 

the most extreme range of the focal distance candidates (well outside the standard deviation 

interval), and a pixel position close to the borders of the image, the violation of the 

assumption is minimal. 

In order to additionally verify the distortion magnitude, linear, quadratic and cubic fits 

for the plate constants were tested using the software tool Astrometrica [63]. The linear 

coefficients were found to be in the order of magnitude of 10
-5

, the second degree terms were 

found to be in the 10
-10

 order of magnitude, and the third degree terms were lower, in the 10
-

15
 domain of values. These terms lead to a radial distortion of less than 0.01 pixels at the 

border of the image. 

The focal length computation method is run for both the left camera system (located 

in the village Feleacu, Cluj county, Romania) and for the right camera system (located in 

Marisel, Cluj county, Romania). The estimated focal distances, which are used for the rest of 

the stereovision process, are fL= 79772.22 pixels, and fR=79839.60 pixels. 

 

2.1.7. The translation vectors 

 

The translation vectors can be determined from the GPS coordinates of the cameras’ 

locations. Even if the commercial GPS devices have a low precision, with errors in the range 

of meters, this error is not critical for our situation, as the distance between cameras (the 

baseline) is several orders of magnitude greater.  

The GPS coordinates of the two observation locations are the following: 
 
Feleacu Latitude:  46º42’36.50”N 
  Longitude: 23º35’36.74”E 
  Elevation: 743 m 
Marisel Latitude: 46º40’34.362”N 

Longitude: 23º07’8.904”E 
Elevation: 1130 m 

 

In order to extract the translation vectors (in the ECEF coordinate system) from the 

GPS parameters, the World Geodetic System standard is used, in its latest revision, WGS 84 

[15]. This standard defines the Earth’s surface as an ellipsoid with the major radius 

(equatorial radius) a = 6378137 meters and a flattening factor f=1/298.257223563. The minor 

(polar) radius can thus be computed as b=a(1-f), being approximately 6356752.3142 meters.  

Knowing the latitude φ, the longitude λ and the elevation h, one can extract the 

translation vector’s components X, Y and Z using the following equations (the latitude and 

longitude angles are converted to radians): 

ϕϕ 222 sin)1(cos

1

f
c

−+
=

       (2.1.4) 

cfs
2

)1( −=          (2.1.5) 

ϕcos)( hacr +=         (2.1.6) 
λcosrX =          (2.1.7) 

λsinrY =          (2.1.8) 
ϕsin)( hasZ +=         (2.1.9) 
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At this point, the translation vectors TCL and TCR, and the intrinsic parameters of the 
cameras are known. All these parameters are fixed, as the camera properties do not change, 

and the positions of observation remain fixed. The parameters that are still unknown are the 
rotation matrices RCL and RCR, and these parameters change for each pair of acquired images, 

as the star tracking system continuously re-orients the cameras. 
 

2.1.8. Online calibration of the rotation matrices 

 

Any calibration requires a set of reliable features that have known real-world 
coordinates, and can be easily identified in the image space. The reference features than can 

be used are the stars. They are catalogued, so their position in the real world is known, and 
they can be easily identified in the image space by image processing algorithms. 

As the observation system will be pointed towards different areas of the sky, a fresh 
set of reference stars must be retrieved. In order to accomplish this task, the U.S. Naval 

Observatory Interactive Catalog and Image Search [64] is used. The catalog allows the user 
to specify a sky region, in terms of the equatorial coordinates (Right Ascension and 

Declination) of its center, and the height and width of the region in arc minutes. Other 
parameters, such as the epoch of the measurement and the magnitude range of the stars to be 

retrieved, are provided, in order to get the most relevant stars.  
A software module was developed, capable of automatically retrieving the relevant 

stars for any region in the sky. The approximate center of the image is specified in equatorial 
coordinates, along with the size of the field of view. The magnitude interval is set such that 

the stars do not appear too large in the image, but at the same time they should be clearly 
identifiable (not too faint). From the list of retrieved stars, the ones that are too close together 

are removed, as they may cause false matching results. The remaining stars are used for 
calibration. 

Thus, once the telescope is oriented, the equatorial coordinates of stars that can be 
used for calibration, RAi and DECi, i=1…N, are retrieved in a matter of seconds. In what 

follows, the star coordinates RA and DEC will be handled as regular angles, which means that 
they will be converted to radians. 

After the coordinates of the stars are retrieved, a hypothetical image representation of 
these stars is created. This means that for each star i an image space coordinate pair (xi, yi) is 

computed.  
First, the average Right Ascension and the average Declination are computed for the 

set of N calibration stars: 

1

N

i

i

RA RA
=

=∑           (2.1.10) 

1

N

i

i

DEC DEC
=

=∑          (2.1.11) 

Then, relative angular displacements from the group center are computed for each 

star. The angular displacements corresponding to the right ascension are scaled so that the 
narrowing of the interval with the increase of the declination is accounted for: 

 

( ) cos(DEC)i iRA RAγ = −         (2.1.12) 

i iDEC DECϕ = −          (2.1.13) 
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Now, the angular displacements can be converted to pixels, by using the focal 
distance of the camera as a scaling factor. The resulted coordinates are centered in the image 

plane, by adding the half width (w) and the half height (h) of the image: 
 

2
i i

w
x fγ= +          (2.1.14) 

2
i i

h
y fϕ= +          (2.1.15) 

The predicted star coordinates in the image space can be close to the real image 

position of these stars, or they can be very far apart, as shown in figure 2.1.6. The only thing 

one can rely on is that the relative distances between the stars in the set are correct, if the 

focal distance of the camera is correctly calibrated. The whole group of stars is an object that 

is rotated and translated with respect to its correct position in the image, and sometimes the 

translations and rotations can be significant (in figure 2.1.6, right, a rotation of 180 degrees is 

shown). Thus, at the beginning of an observation sequence for a specific region of the sky the 

star to image matching process must allow a broad range of displacement and rotation. 

 

 
Fig. 2.1.6. Predicted image positions of reference stars (blue) versus actual positions (red). 

Best case scenario (left, rotation of 0
o
), versus worst case scenario (right, rotation of 180

o
). 

 

The center of mass (of the star set object) has the image space coordinates x  and y  , 

which represent the averages of the image coordinates of each star i in the set, xi and yi. 

Applying the rotation and translation transformations to the whole star set (such that the form 

or the scale of the object does not change) is equivalent to altering the position of each star in 

the image, using the following equation: 

 

' ( , , ) cos sin

' ( , , ) sin cos

i i

i i

x x y x x x x

y x y yy y y

δ δ α α α δ

δ δ α α α δ

   −−     
= + +          −          (2.1.16) 

 

Using the transformation specified by equation (2.1.16), the objective function that 

measures the quality of the match between the hypothetic star position and the acquired 

grayscale image I is defined as: 

 

1

( , , ) log( ( ' ( , , ), ' ( , , )))
N

i i

i

M x y I x x y y x yδ δ α δ δ α δ δ α
=

=∑
   (2.1.17) 
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In equation (2.1.17), N denotes the number of reference stars. The best possible match 
between the star coordinates and the image is signaled by a maximum of the objective 

function M, as each star in the image has a brighter value than its surroundings. Thus, the 
desired parameters of the match are found as: 

 

, ,( , , ) arg max ( , , )
match match match x y

x y M x yδ δ αδ δ α δ δ α=
   (2.1.18) 

The search for the best parameters for star matching is performed using a wide search 

space at the beginning of the observation sequence (for the x and y displacement, a range of 
plus or minus 300 pixels is allowed, and for the rotation angle the full 360 degrees angular 

range is explored). However, searching this space is computationally expensive, and therefore 
in the subsequent frames of the sequence the search space is restricted around the previously 

found parameters. This does not exclude the possibility of failure – sometimes the movement 
of the rig may be too abrupt, and a re-initialization of the parameters is required. This 

situation is signaled by the detection routine, which will be described in the next sections. 
Thus, a feedback between the detection routine and the calibration routine ensures a fast star 

matching process, with the possibility of recovery from failure. 
The final step for the star to image matching process is a local refinement of the 

position detected by rotating and translating the whole star ensemble. In a small, 7x7 sized 

neighborhood around the estimated position, the local maximum of the intensity image is 
searched. Then, the positions of the pixels in the neighborhood that have a brightness equal or 

5% less than the local maximum are found, and the average position obtained from these 
pixels is taken as the locally refined position of the star, as shown in figure 2.1.7. 

 

a)  b)  c)  d)  

Fig. 2.1.7. Refining the position of the stars: a) and c) are the positions estimated by 

rotating and translating the whole set of stars, b) and d) are the positions after local 

refinement. 

 
Now that the reference stars are matched to the acquired image, the rotation matrix 

can be computed. For each matched star i, we now know its declination DECi, its right 
ascension RAi, and its coordinates in the image space, xi and yi (for both cameras). The right 

ascension of the star, RAi, is converted to the Hour Angle relative to the zero meridian, HA0,i, 
which is the star’s azimuth with respect to the zero meridian, and thus tied to the Earth 

Centered, Earth Fixed (ECEF) coordinate system. The relation between the Right Ascension 
and the zero meridian Hour Angle is the following: 

 

0, 0i i
HA LST RA= −

        (2.1.19) 

 
The term LST0 is the Local Sidereal Time of the zero meridian, obtained from the time 

and date of the observation. 
The components rn,k, n=1..3, k=1..3 of the rotation matrix R, the declinations DECi, 

the Hour Angles HA0,i, and the image positions of the stars, xi and yi, are connected through 
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the following equation, in which (xc, yc) is the position of the principal point and f is the focal 

distance in pixels: 
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           (2.1.20) 

For each star in the set, two equations are generated. The equation system is supra-

determined, and the Gauss-Newton iterative method is used for finding the nine unknowns. 

 

2.1.9. Detection of satellites from consecutive images 

 

Low Earth Orbit objects (LEOs) and lower orbit MEOs have a characteristic signature 

streak, which can be detected even without the help of stereovision. Thus, one approach 

towards detection is to identify the satellites independently from the image sequence of each 

sensor. For each newly acquired image of a sequence, the following steps are executed: 

- Background removal 

- Object candidates detection in the image space 

- Object classification 

The image pixels that form the possible object are identified as pixels that change in 

time, with respect to a background. Because a star tracking system is used, the only changing 

pixels that are expected are those caused by a moving object. A simple difference between 

the frames may be the first solution of choice, but a better choice still is to estimate the 

background image with a moving average technique, which has a smoothing effect. The 

value of the averaged background is subtracted from the current frame, and the difference is 

thresholded using a small enough threshold that the faint contrast objects are still preserved. 

Individual image pixel groups are identified by applying a labeling algorithm [65] to 

the binary image resulted in step 1. After that, the labeled binary objects must be classified, 

so that we can decide whether they are satellite streaks, planes or other objects. In order to 

perform that classification, we will approximate every binary object by an ellipse, and we’ll 

compute the geometrical properties of this ellipse. 

 

(a) 

(b) 

Fig. 2.1.8. (a) The original image containing two satellite streaks. (b) Labeled objects on the 

background-removed image. 

 

The properties for the image object classification process are: Area, Major Axis 

Length (LMAX), Minor Axis Length (LMIN) and Eccentricity (e). 
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In order to build a decision tree, a database for training and testing database was 
created by manually labeling each object. The result is a database containing all the relevant 

objects and their classes. Using this database, a decision tree classifier was automatically 
using Weka [66]: 

 
       Area <=85: other 

       Area > 85 

          | Eccentricity <= 0.99 

       | |   Eccentricity <= 0.935: other  

       | |   Eccentricity > 0.935 

       | |   |   MajorAxisLength <= 47.543: other  

       |  |   |   MajorAxisLength > 47.543: satellite  

       | Eccentricity > 0.99 

       | |   MajorAxisLength <= 200.337: satellite 

       | |   MajorAxisLength > 200.337 

       | |   |   Eccentricity <= 0.998: plane  

       | |   |   Eccentricity > 0.998 
       | |   |   |   MajorAxisLength <= 294.676: satellite 

          | |   |   |   MajorAxisLength > 294.676: plane 

 

The decision tree is able to discriminate between three classes of sky objects: satellite 
(or generic LEO object), plane, or other (which means any image artifact). 

 

2.1.10. Detection of satellites from a stereo image pair 

 

The higher orbit satellites are less bright, and also move much slower than the lower 
orbit ones, meaning that these satellites do not generate the characteristic streak that can be 

easily identified. For detecting these satellites, the parallax effect in the stereo image pair is 
used. This effect means that the relative position of the satellite feature with respect to the 

common reference stars matched in the two images, for the purpose of calibration, will be 
different. 

 
Assuming that the difference in scale between the two images is negligible, as they 

are acquired with similar optical instruments, one can define a rotation angle and a translation 
vector between the left group of reference stars positions and the right group of reference 

stars position. Using the known image coordinates of the reference stars, the rotation angle 
and the translation vector (which contains the translation amounts for the x and the y 

coordinate) can be computed by least squares error minimization. 
After the transformation parameters (rotation and translation) between the left and the 

right image of the stereo pair are found, they can be used to align all stars of the left image to 
match the ones on the right, and all the stars on the right image to match the ones on the left. 

This is the main idea for satellite detection: as the stars are fixed with respect to each other, 
transforming the whole right image using the rotation and translation parameters obtained 

from the reference stars analysis will get us a new image that has all the stars in the same 
position as the left image, but the satellite streak’s position will not coincide. Figure 2.1.9 

shows the warping process, for a small region of the images, containing the satellite streak. 
Thus, the satellite streak detection principle is the following: warp (rotate and 

translate) one image of the pair, keep the other image unchanged, and look for the 
differences.  
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a) b) 

c) d) 

Fig. 2.1.9. Warping: aligning the star background between the images of the stereo pair. Left 

(a) and right (b) original images, cropped. Warped right image to match the stars of the 

original left image (c), and warped left image to match the stars of the right image (d). 

 

The original image (left or right) will be considered as foreground, and the 

corresponding warped image (right to left, or left to right), smoothed by a convolution with a 

Gaussian kernel G, will be considered as the background. For example, for detecting the 

satellite pixels of the left image, the foreground and the background images are defined as: 

*

F L

B RL

I I

I I G

=

=
         (2.1.21) 

 

In what follows, the detection of the satellite pixels from the left image, using the 

warped right image as the background, will be presented. For detecting the satellite pixels on 

the right image, the same steps are applied, using as foreground the right image IR and as 

background the warped left image ILR convolved by the Gaussian kernel G.  

Identifying the satellite pixels in the foreground image means identifying the relevant 

differences between the foreground and the background. This process is, however, more 

complex than simply computing the difference between the intensity values of the pixels of 

the two images, because the two images are acquired from different locations, with non-

identical cameras, and the satellite streak signal is not very strong with respect to the stars 

and the noise in the image. In order to overcome these difficulties, an elaborate strategy for 

finding the satellite pixels was devised. 

First, a threshold image IT is defined. Each pixel of the threshold image at image 

coordinates (x, y) is defined as a fraction of the maximum between the foreground image 

pixel and the background image pixel at the same coordinates: 

 

( , ) max( ( , ), ( , ))T F BI x y I x y I x yη=
      (2.1.22) 

 

The fraction coefficient η is adjusted by trial and error, currently being set to 0.4η = .  

The difference between the foreground pixel intensity value and the background pixel 

intensity value at coordinates (x, y) is compared with the threshold image pixel value at the 

same coordinates. The pixel difference value above the pixel threshold indicates a possible 
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satellite pixel at the specified coordinates. Unfortunately, this does not remove all possible 

false positives. 

The false positives are the strong differences between foreground and background 

which may arise at the location of bright stars. These bright stars are not point-like in the 

image, and sometimes, due to chromatic aberrations or CCD saturation, they are not even 

circular (their shape may be elliptic, or they may have linear steaks emanating from the 

central point). Corrupted star shape, or uneven back lighting of the location, may lead to 

significant differences around the bright stars, even when their centers are aligned by 

warping. In order to avoid these false positives, a mask image for the regions most likely to 

cause false positives is created.  

First, a static threshold T is applied to both the foreground and the background 

images. The value of this threshold is tuned experimentally (currently T=10). The foreground 

mask MF and the background mask MB are binary (logical) 2D arrays, defined as: 

 

( , ) ( ( , ) )

( , ) ( ( , ) )

F F

B B

M x y I x y T

M x y I x y T

= >

= >
         (2.1.23) 

 

The two masks are shown in figure 2.1.10. 

a) b) 

Fig. 2.1.10. The foreground star mask (a) and the background star mask (b). 

 

In order to increase the safety margin, the two masks are dilated with a circular 

structured element D, with the radius of 4 pixels. This will account for possible small 

misalignments in the warping process, and for incomplete identification of all star pixels in 

the thresholding process.  

 

FD B

BD D

M M D

M M D

= ⊕

= ⊕
        (2.1.24) 

 

The two masks are then combined using a pixel wise ∧ (and) operation. The position 

of the bright stars is the same in the foreground and in the background, the dilation accounts 

for small misalignments, and thus we expect that the significantly bright stars will have non-

zero (logical true) pixels in both masks. The final star mask M is, for each pixel position (x, 

y): 

 

( , ) ( , ) ( , )DF DBM x y M x y M x y= ∧
       (2.1.25) 

The final star mask is shown in figure 2.1.11. 
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Fig. 2.1.11. Combined star mask, showing the exclusion zones for avoiding false positives. 

 

Now, the difference between the background and the foreground can be computed. 

The arithmetical difference is compared with the threshold image IT, and with the fixed, low 

threshold T, retaining the pixels that pass both thresholds, excluding those that correspond to 

the exclusion mask M. Formally: 

 

( , ) ( , ) ( , )F BI x y I x y I x y∆ = −
        (2.1.26) 

R ( , ) ( ( , ) ( , )) ( ( , ) ) ( , )
T

I x y I x y I x y I x y T M x y
¬

∆ ∆= > ∧ > ∧    (2.1.27) 

 

The result binary (logical) image IR contains all pixels for which the difference I∆

between foreground and background passes both the global threshold T and the location-

specific threshold IT(x, y), and do not fall inside the exclusion zone. The result image is 

depicted in figure 2.1.12. 

 

 
Fig. 2.1.12. Candidate satellite pixels obtained by foreground-background difference analysis. 

 

It can be seen from figure 2.1.12 that even if the satellite’s pixels are clearly 

identified, they are not the only pixels that have passed the established conditions. 

Fortunately, the other non-false pixels are usually isolated, while the pixels belonging to the 

satellite are grouped together into larger clusters. For this reason, a simple connected 

component identification process (binary image labeling) is applied, and the clusters with a 

pixel count of less than 10 pixels are excluded. Figure 2.1.13 shows the remaining pixels, 

after labeling and area based validation, for the left image as foreground (the situation for 

which all the processing steps have been described), and also for the right image as 

foreground (results obtained by executing the same algorithm steps, with the right image as 

the foreground and the warped left image as background). 
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a) b)  

Fig. 2.1.13. Satellite pixels, validated by area analysis. Detection results on the left image (a) 

and on the right image (b). 

 

A final step in the detection process is to cluster all streak fragments that are close 

together into a single object. This step is necessary because, as can be seen from figure 

2.1.13, most of the streaks will not be detected as a compact object, due to the low contrast 

and the fact that they may be close to a significantly bright star, which will exert its exclusion 

zone and cut some of the pixels from the result. 

This detection algorithm has a very high tolerance to noise and different background 

illumination between the images of the stereo pair, while retaining a high sensitivity. The 

number of false positives resulted from this processing stage is very low, easily removable in 

the next step, the stereo measurement. If a very high number of satellite candidates are found 

in the detection step, this is a signal that the reference stars are not matched properly in the 

two frames, and the star matching process is re-initialized by searching for rotations and 

translations in the whole parameter space, instead of reusing the position of the past frames in 

the sequence as the starting point, and a reduced range for rotation and translation. 

 

2.1.11. Establishing the stereo correspondence 

 

Stereovision-based 3D reconstruction relies on matching features from the left and 

right images, followed by triangulation. If the sky objects were point-like in the image space, 

the correspondence search process would be straightforward. However, we have already seen 

that this is not the case, and the image signature of these objects is a line segment, having a 

length proportional to the speed of the object, and to the exposure time of the camera. 

If the conditions were ideal, the moving object would become visible at the same time 

in both images of the stereo pair, and it will also disappear at the same time. If this were the 

case, the easiest way to find the corresponding points is to look at the ends of the line 

segments. Unfortunately, there are several causes that make this approach a bad idea. First, 

the two observation sites have different background illumination conditions, a condition that 

affects the thresholding of the object’s features and may cause different length of segments in 

the two images. Second, the line segment’s length may be influenced by the Gaussian noise 

of the image, or by the background stars that happen to be near the object, and these 

conditions may be slightly different for the two cameras. Third, due to the low cost 

equipment used for camera triggering (off the shelf GPS receivers connected to PC’s) there 

may be some errors in the camera synchronization process, errors that may influence the start 

of the exposure period (which influences the position of the first end of the linear segment) or 

the duration of the exposure (which influences the segment length). All these conditions 

make a compelling argument against using the ends or the middle of the segment for 

matching. Fortunately, there is a more reliable property of the moving object related line 

segment, which facilitates accurate, sub-pixel based matching between the images: the 

trajectory line itself. 
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While the trajectory line is unbounded, and therefore the correspondence points are 
difficult to find, there is another restriction that drastically limits the search space: the 

epipolar constraints. The epipolar constraint says that for each point PL of the left image, the 
possible correspondences in the right image are located on a line called the epipolar line. This 

constraint is shown in the figure below: the optical centers of the two cameras form, together 
with the unknown 3D point X that needs to be measured, a plane that intersects the two image 

planes forming the epipolar lines. One can see that the plane is completely determined by one 
projection ray (caused by one point in one of the images) and the line joining the cameras 

optical centers. This means that knowing a point in the left image and the camera parameters 
(intrinsic and extrinsic), the epipolar line that will contain the corresponding right point PR 

can be computed. 
 

 
Fig. 2.1.14. The epipolar geometry. 

 

The epipolar line for each point of the left image can be computed from the intrinsic 
and extrinsic parameters of the cameras, via the fundamental matrix [67]. The process of 

correspondence finding is depicted in figure 2.1.15, and has the following steps: 
 

For each candidate object on the left image: 

Compute the center of mass of the candidate object, CL; 

Using the fundamental matrix computed from cameras’ parameters, compute the epipolar line on the 

right image, the geometric locus of the stereo correspondents of the left center of mass; 

For all candidate objects in the right image: 

Compute the distance between their centers of mass and the epipolar line (distances d1, d2, d3 

in figure 13); 

If the distance of a right candidate object to the epipolar line is below a threshold (i.e. 50 

pixels), then: 

   Compute the elongation axis of the candidate object; 

Compute the intersection between the elongation axis and the epipolar line. This will 

be the stereo match of CL, denoted CR; 

Using CL and CR, apply stereo triangulation and compute the 3D coordinates. Accept 

the object as valid if the distance to the observer is in the accepted range. 
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Fig. 2.1.15. Searching for the left-right stereo correspondence. The green objects are the 

satellite streaks, and the red objects are the false candidates. 

 
Using the distance to the epipolar line as a correspondence filter, and applying a range 

validation on the stereo 3D reconstruction results, has the effect of preventing the possible 

false positives of the detection stage to propagate to the final results. This is a great advantage 
of stereovision – imposing geometrical constraints severely limits the valid left-right pairs, 

and thus occasional false positives in the detection phase are not critical. 
The correspondent point for the left center of mass is, as described, not the right 

center of mass of the object that passes the distance to the epipolar line test, but the 
intersection between the epipolar line and the elongation axis. This point was preferred 

because the center of mass is not sufficiently stable for matching – due to weak contrast or 
due to bright stars in the vicinity of the object, some object pixels may be lost, and the center 

of mass will be displaced. The elongation axis, on the other hand, does not change much, as 
long as an adequate number of pixels for the object are found. 

 

2.1.12. Computation of the 3D coordinates of the satellite 

 
The corresponding points in the left and right images are now available, and thus the 

triangulation process can be applied. This triangulation will transform the image point pair 
(PL, PR) into a single 3D point PW. This 3D point lies at the intersection of the projection rays 

passing through PL and PR (the lines passing through the image points and the optical 
centers). 

Because the camera parameters are known, one can write the equation of the line 
passing through the 3D point PW and the optical center of the left camera CL [68]. The 

perspective projection leads to the following relation: 
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where µ  is a scaling factor depending on the distance ZW. Multiplying with T

LR  leads 

to: 
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which can be detailed as: 
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The above equation is a system of three equations with four unknowns. The third 

equation can be used to write 1−µ  as a function of the other unknowns: 
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Replacing 1−µ  in the first two equations, one obtains the following system: 
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This system has two equations and three unknowns. Writing the same equations for 

the right camera system leads to a total of four equations with three unknowns, a supra-
determined system that can be solved by a least squares approach. From a geometrical point 

of view, the least squares solution will find the 3D point that has a minimum distance from 
the two projection lines, even if small calibration or matching errors will prevent these lines 

from intersecting [67]. 
 

2.1.13. Experimental results 

 
In order to estimate the accuracy of the range measurement algorithms for LEO 

objects, known satellites were used, because for some of them the ground truth information 
can be extracted from the website www.heavens-above.com. Several satellites that were 

visible at the time and place of the observations were manually identified, and their range 
information extracted. 

The following table shows the computed results for several known LEO satellites. 
The observations were made on July 9, 2011. 
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Table 2.1.2. Range measurement results, LEO satellites. 

Local 

time 

Object name Orbit 

Min x Max 

(km) 

Distance to 

observer 

(km) 

Distance to 

ground -

computed 

(km) 

Distance to 

observer -

computed 

(km) 

2:58:51 Cosmos192 704x718 714 704 713.70 

3:09:07 Cosmos1743 543x564 586 566 582 

3:44:32 Cosmos923Rocket 761x789 1078 790 1109 

2:50:59 Cosmos2263Rocket 825x848 1161 806 1131 

3:41:44 Meteor* N.A. N.A. 100,25 105 

* The detected distance meteor-observer is in the typical range interval for meteor 

burning in the atmosphere. 

 

The results for LEO detection and ranging seem to be very promising, both for the 

distance to observer and for the distance to the ground. With the current limitations of camera 

sensitivity, the system is able to reliably detect objects that have a distance from the ground 

in the interval of 100 to 1500 kilometers. 

For testing the detection and measurement accuracy for MEO and beyond objects, 

several observations have been performed, covering four sky zones, specified by a central 

reference star, observations aimed to detect six satellites, four MEOs and two Molniyas 

(Highly Eccentric Orbit objects), whose apparitions and ranges were predicted using the 

astronomical software The Sky [69]. 

The aspect of the observed satellites in the image proved to be extremely variable. 

While the length of the streak was consistent with the satellite’s nature, the brightness of the 

satellite’s pixels in the image seems to be unique to each of the observed case. Some 

examples are shown in figure 2.1.16: the average brightness of the satellites ranges from 15 

to 65 DNU (the brightness of a pixel can have values from 0 to 255 DNU – Digital Number 

Unit), which makes the satellite brighter than the background, which has an average 

brightness of 5 DNU, but significantly less bright than the stars in the image, which can go up 

to the saturation value of 255 DNU. For the higher range satellites such as the Molniyas, the 

lower brightness is also combined with a shorter streak. 

 

 
Fig. 2.1.16. Aspect of satellites in the image space. From left to right: 733, 738, PRN10, 

PRN8, Molniya 3-41. Average satellites’ brightness: 55, 65, 30, 22, 15 DNU. Average 

background brightness: 5 DNU. 

 

A variable brightness level, and also a variable length of the satellite streak, can be 

also observed for the same satellite, in different frames. The reason for this behavior is a fast 

spin of the satellite, which changes the amount of light the object reflects, as the reflectivity 

of the satellite’s surface is not homogeneous. This effect is shown in figure 2.1.17, for a 

Molniya type satellite, which can go from a very strong brightness (value 255 DNU – 

saturation) to invisibility in 3-4 frames. This behavior strongly affects the detection rate. 
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Fig. 2.1.17. Variable perceived brightness of Molniya 1-91 due to rapid spinning. From 

saturation (left) to a brightness of 36 DNU (middle) and then to 12 DNU (right). 

 

A summary of the detection and coordinate computation results is presented in Table 

2.1.3. The predicted range, with respect to the Feleacu observation station, was generated 

using The Sky. The measured range is the distance between the 3D coordinate vector of the 

satellite, in the ECEF coordinate system, computed by stereovision, and the 3D coordinate 

vector of the Feleacu observation station, computed from the GPS coordinates using the 

geodesic model. The observation time is the time interval between the first presence of the 

satellite in both images of the stereo pair and the last presence. The average time elapsed 

between frames is 8 seconds, which includes the exposure time of 5 seconds. The detection 

rate is computed as the ratio between the number of frames the satellite is correctly detected 

and ranged and the total number of frames the satellite was observable with both telescopes. 

 

Table 2.1.3. Measurement results for the observed satellites. 

Sky region Satellite 

name 

Observation 

Time 

(UTC+3) 

Mean 

predicted 

range 

(km) 

Mean 

measured 

range 

(km) 

Mean 

error 

(km) 

Mean 

absolute 

error 

(km) 

Detection 

rate (%) 

SAO37985 GLONASS 

733 

0:33:24- 

0:35:16 

19223.60 19131.73 -91.87 91.93 86.66 

SAO37985 GLONASS 

738 

0:35:40- 

0:37:24 

19242.26 19168.26 -74.00 73.99 100 

SAO54449 GPS  

PRN 10 

1:21:32- 

1:23:56 

20455.47 20471.77 16.30 41.66 89.47 

SAO54449 GPS 

PRN 8 

1:47:48- 

1:49:40 

20860.97 20849.13 -11.84 119.89 100 

SAO36361 Molniya  

3-41 

2:09:16- 

2:16:04 

32054.90 32590.26 -

535.36 

547.48 90.90 

SAO25214 Molniya 

1-91 

2:37:40- 

2:50:44 

39828.90 39651.32 -

177.58 

485.15 40.23 

 

The test results show variable measurement accuracy. As expected from a 

stereovision sensor, the accuracy is significantly better for the MEO satellites than for the 

Molniyas, as the accuracy drops with the distance. The measurement error corresponds to a 

pixel uncertainty of matching of 1-3 pixels, which, taking into account the detection method, 

is expected. There are, however, several cases where the measurement errors seem to be 

systematic, pointing to a permanent offset between the predicted position and the 

measurement, which may be caused by outdated predictions. 

Several experiments aimed to verify the assumption that the position of the principal 

point is not relevant to the measurement process were also performed. The position of this 

point is important in itself, as it defines the interior geometry of the camera, but it does not 

affect the triangulation process, due to the fact that any deviation from the true value of this 

point will be compensated by the rotation matrices. In order to support this claim, the position 
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of the principal point has been significantly altered, and the detection and measurement 
algorithm has been applied for the same frame, which includes a GPS satellite. The following 

facts were observed: 
- When the principal point is assumed to be in the center of the image, the satellite is 

detected at the ECEF coordinates (in km) X=21131.22, Y=4908.85, Z=15042.85, having the 
distance to the observer 20278.07 km. 

- When the principal point is displaced from the center by 50 pixels on both axes, the 
measured ECEF coordinates are X=21131.53, Y=4908.91, Z=15043.04, and the range is 

20278.44 km. 
- When the principal point is displaced from the center by 200 pixels on the horizontal 

axis, and by 100 pixels on the vertical, the measured ECEF coordinates are X=21132.30, 
Y=4909.05, Z=15043.52, the range being 20279.36 km. 

- When the principal point is displaced to the top left corner of the image, more than 
1000 pixels away from the original position, the measured ECEF coordinates are 

X=21143.52, Y=4911.16, Z=15050.34, the range being 20292.65. 
All these displacements are extreme, well beyond the normal displacements of a 

principal point with respect to the image center. However, the results on the 3D 
reconstruction process are minor, well below the uncertainty expected from triangulation, 

assuming image space positioning errors of sub-pixel accuracy. Thus, the assumption about 
the principal point is valid. 

2.1.14. Conclusions 

 

This chapter presented solutions for the surveillance of the Earth orbits using large 
baseline stereovision, relying on low cost equipment, able to detect and range objects having 

a wide range of altitudes, almost in real time, with a high detection rate. The main advantages 
of applying stereovision to space surveillance are the following: 

- It requires no elaborate, lengthy surveillance of the same sky region. The detection 
using stereovision is instantaneous – if an orbiting object is in the left and right 

frame, it will be detected instantly. 
- It requires no strong assumptions about the orbits to be surveyed: the same setup 

can detect a 19000 km altitude satellite and a 40 000 km satellite, or both, if they 
happen to be in the same image. Only when switching between highly different 

ranges, such as between LEO and MEO, the optical setup needs to be changed. 
- Automatic, instantaneous ranging: the system is able to produce a 3D coordinate 

vector of the object detected. While the accuracy of the measurement is not 
comparable to what one can obtain using multiple observations and employing 
elaborate orbit calculation tools, having an instant 3D position approximation may 

be highly valuable in the process of large sky area surveillance, and can provide a 
quick working estimate that can be further refined. 

- Works with low cost equipment, in less than ideal working conditions. The cheap 
and lightweight equipment can be easily set up to a new site, and the algorithms 

have proven resilient to image noise and background pollution. In fact, one of the 
observation sites is quite close to the busy city of Cluj-Napoca, and this has not 

impaired the detection performance. 
The methods can be easily deployed on multiple observation sites, for different types 

of instruments, with different focal lengths and apertures. This way, many regions of the sky 
can be surveyed at the same time, with detection results delivered for each acquired image 

pair.  
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(b-ii) Scientific, professional and academic future development plans 
 

The candidate’s activity in the future will rely on the experience, the results and the 
reputation obtained from the activity that lead to the present habilitation thesis.  

For the near future, the research activity will be related to the research projects the 
candidate is involved in, including a research project in which the candidate has the role of 

manager. This means that the near future research activity will be focused on the two main 
directions that have produced the results described in this thesis: modeling and tracking 

complex, dynamic 3D environments, and stereovision-based space surveillance.  
The field of dynamic environment modeling and tracking is strongly related to the 

field of sensorial perception for driving assistance, a field in which the research group that the 
candidate is part of, the Image Processing and Pattern Recognition Group (IPPRG) is 

involved in since 2001, mainly through contracts with industrial partners. Thus, the results 
that will be pursued will need to have real world application. 

 
The main challenges that will be tackled in the context of dynamic environment 

modeling and tracking are the following: 
1) Developing a dynamic world model and tracking solution that will integrate the 

stereovision information in the measurement process without first transforming it into a raw 

elevation map. The raw stereo information will include disparity and grayscale values for 
each pixel in the image, and the measurement model will relate these values and their 

uncertainty directly to the tracking mechanism. In this way the error of the measurement can 
be estimated with much better precision, which will improve the tracking results. 

The main problem with using the raw elevation map as the source of measurement is 
that the process of achieving this map is complex and its errors are difficult to model. The 

raw stereo information is composed of disparity and gray level information for each pixel in 
the left or the right image. This information is then transformed into 3D points, which means 

that the disparity information, which has a constant error related to the uncertainty of the 
stereo matching process, is transformed into distance, whose uncertainty is variable, 

increasing as the distance itself increases. This distance error influences the errors in the other 
coordinates as well, producing an unevenly spread set of 3D points in the scene. From these 

points, the elevation map is built, which is another complex process, which can filter some of 
the point errors, or can amplify others. All these transformations lead to a high difficulty in 

producing an accurate measurement model. If the tracked scene could be related directly to 
the (u – pixel column, v – pixel row, d – pixel disparity, g – pixel gray value) space of the 

stereo measurement, the errors affecting all these values would be constant and easily 
modeled. However, switching to this model is not easy. First, it could mean a high 

computational load, if each particle of the environment model is projected into the image 
space, and second, one should be aware of the occlusions, which prevent some existing 

entities in the scene to be visible in the image space. The occlusion problem is further 
complicated by the dynamic nature of the environment, which could transform a visible 

object into an occluded one during the tracking process. 
2) Transforming a world model and tracking method into a sensor fusion technique, 

by integrating multiple measurement sources in the measurement process. As an intermediate 
representation, either the dynamic occupancy grid or the dynamic elevation maps are suitable 

for this attempt. 
A complex dynamic environment is better observed if multiple sensors, each with its 

own strengths and weaknesses, are used. Stereovision has a large point density, but weaker 
measurement accuracy for these points; laserscanners have an extremely accurate 

measurement precision, but a low point density (excepting the very high end laser sensors, 
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which cost in the range of tens of thousands of euro) and suffer from the variable timestamp 
of each scanning ray; radars only detect metal targets, but have the advantage of delivering 

the speed of the target as raw measurement, extracted using the Doppler effect, without the 
need of tracking. Besides using different sensors, one could also use different type of data 

extracted from the same sensor, using different processing algorithms (maybe even on 
different computing platforms). For example, from a stereo system one can compute the 

optical flow, which is another computationally demanding task, but which can add speed 
information to the tracked features of the scene, allowing the tracker to estimate the speeds of 

the dynamic entities of the environment faster. 
Handling multiple sensors means facing a series of challenges. The errors of each 

sensor have to be modeled, and the world model has to be related to each of the sensors 
through customized projection routines. The sensors may not be synchronized with each 

other, meaning that they deliver data at different time instants. For accurate fusion, the time 
instants of the sensors must be known with respect to a common time base, and the time 

differences will have to be compensated using the prediction of the world model.  
 

Due to the fact that the candidate is the manager of the PNII-PCCA project 
“Automatic Medium and High Earth Orbit Observation System Based on Stereovision”, set 

to end in 2016, another short term research field requiring his attention is the stereovision-
based space surveillance. While many problems have already been solved in the first years of 

the project, there are still issues that need to be addressed, so that the resulting system may 
become a robust infrastructure for space surveillance, able to open our path towards 

collaboration with the interested international institutions such as the European Space 
Agency. 

The main challenges that are still open in the field of stereovision based space 
surveillance are: 

1) Improving the quality of the range estimation, by an in depth analysis of the 
sources of uncertainty in the measurement process and devising solutions to remove these 

uncertainties. 
The stereovision process is highly sensitive to a series of factors: accurate matching of 

the features from the left and right image, precise synchronization of the acquisition process, 
both at starting the image capture process and in terms of the length of the exposure time, and 

highly accurate knowledge of the camera parameters, both intrinsic and extrinsic. All these 
premises are challenged by the nature of the observation system: each station has to be 

triggered independently, and no common signal can be applied, the exposure time is of the 
order of seconds, which means that the target is not point-like and thus the exact matching of 

the corresponding points is difficult and relies on very precise estimation of the target 
trajectory and of the epipolar lines, the rotation matrices are continuously changing and 

require constant re-calibration. All these issues lead to uncertainties, which lead to errors in 
measurement, so a significant effort has to be made towards understanding and compensating 

them. 
2) Designing a tracking algorithm based on estimating the state of the target, state 

which is in fact made out of the orbital parameters. A method for determining the orbit 
parameters from the stereo results, and a prediction system capable of propagating these 

parameters, have to be designed. 
Any object orbiting the Earth has a trajectory described by a set of parameters that are 

named by the astronomical community Two Line Elements (TLE). Knowledge of the object’s 
TLE allows for the prediction of the object’s position with respect to any point on Earth. 

Conversely, the TLE elements can be refined from the measurements that can be associated 
to the orbiting object, and the timestamps of these measurements. A very important objective 
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of the research project is to estimate the TLE parameters of the observed targets, while using 
these parameters to predict the position of the targets in the image space. Basically, a tracking 

algorithm, with the target state described by the TLE parameters, will be designed and 
implemented.  

 
For the long term, the candidate estimates that his research will be focused on 

perception systems for robotics, driving assistance applications and space surveillance, but 
also on generic computer vision topics. The candidate will be involved in his research 

group’s projects, but he will also continuously look for new projects, proposing research 
topics of his own and participating in national and international grant competitions.  

 
As a full time faculty member, the candidate will also be involved in activities related 

to teaching and advising. While continuing his lectures on the topics of Image Processing and 
Design with Microprocessors, and the laboratory activities related to these subjects, the 

candidate hopes to expand his teaching activity with a new and original lecture, related to 
generic methods of environment modeling, perception and understanding, which can be set 

up perhaps in the masters curriculum. 
The candidate will continue to advise diploma and master theses, on subjects related 

to his research activities. However, if this habilitation will be successful, the candidate will 
also advise doctoral research, a new challenge implying increased responsibility. The 

candidate will use his experience to help the PhD students pursue meaningful and fruitful 
research topics, will work with the students for getting original and publishable results, and 

will assist them in the publication process. Also, it is the habilitation candidate’s opinion that 
it is the task of the advisor to continuously look for sources of financing for the PhD students 

he advises, and to help them in the future academic or professional career they choose. 
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